Peripherally Hausdorff spaces and fixed-point theorem

Robert Rałowski Wrocław University of Science and Technology (joint work with Michał Morayne)

> Winter School Abstract Analysis Hejnice, 30-th January 2025

> > ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Banach fixed-point theorem, 1920)

Every Lipschitz contraction on complete metric space has unique fixed point.

Here $f: X \to X$ is a Lipschitz contraction iff existst $c \in [0, 1)$ s.t. for every $x, y \in X$

$$d(f(x), f(y)) \leq c \cdot d(x, y).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Feebly topological contraction

Definition (Kupka)

Let X - T_0 topological space, then $f : X \to X$ is feebly topological contraction if for each open cover U we have

$$\forall x, y \in X \exists n \in \omega \exists U \in \mathcal{U} \ f^n[\{x, y\}] \subseteq U$$

Theorem (Kupka, 1998)

If X top. space $f : X \to X$ s.t.

- f has closed graph,
- ▶ f is feebly top. contraction

then f has fixed point. Moreover, if X is T_1 then fixed point is unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

If X is a Hausdorff topological space and f is a continuous feebly topological contraction on X, then f has a unique fixed point.

Theorem

If X is a Hausdorff first-countable topological space and f is a closed feebly topological contraction on X, then f has a unique fixed point.

Remark

First countability can not be dropped.

For $r \in \mathbb{Z}$ and $A \subseteq \mathbb{N}$ (\mathbb{N} strictly positive integers), let

$$A + r := \{a + r : a \in A\} \cap \mathbb{N}.$$

Let $r \in \mathbb{Z}$ and let \mathcal{G} be a family of subsets of \mathbb{N} . Let

$$\mathcal{G} + r := \{ \mathcal{G} + r : \mathcal{G} \in \mathcal{G} \},$$
$$S(\mathcal{G}) := \{ \mathcal{G} - n : n \in \omega \}$$

Define $\{\mathcal{F}_{\alpha} : \alpha < \mathfrak{c}\}$ ultrafilters and $\{C_{\alpha} : \alpha < \mathfrak{c}\}$ infinite subsets of \mathbb{N} s.t.

• if
$$\alpha \neq \beta$$
 then $\mathcal{S}(\mathcal{F}_{\alpha}) \cap \mathcal{S}(\mathcal{F}_{\beta}) = \emptyset$,

 C_α ∈ F_α ans C_α ∩ (C_α − m) is finite for every α < c and m ∈ N (positive integer),

• each infinite subset of \mathbb{N} is element of some \mathcal{F}_{α} .

$$X = \mathbb{N} \cup \{0\} \cup \bigcup_{lpha < \mathfrak{c}} \mathcal{S}(\mathcal{F}_{lpha})$$

Define $f : X \to X$ s.t.

$$f(x) = \begin{cases} n+1 & n \in \{0\} \cup \mathbb{N}, \\ 0 & x = \mathcal{F}_{\alpha}, \ \alpha < \mathfrak{c}, \\ \mathcal{F}_{\alpha} - (n-1) & x = \mathcal{F}_{\alpha} - n, \ n \in \mathbb{N} \land \alpha < \mathfrak{c}. \end{cases}$$

f is closed map and feebly topological contraction (but not continuous) without fixed point.

Lacally Hausdorff space

Definition

A topological space X is *locally Hausdorff* if every point of the space has an open neighbourhood U such that the topology of X restricted to U is Hausdorff.

Theorem

If X is a locally Hausdorff T_1 topological space and f is a continuous feebly topological contraction on X, then f has a unique fixed point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

 $X = \mathbb{Z}$, base: if $n \in \omega$ then $U = \{-n\} \cup A$ where $A \subseteq \mathbb{N}$ is cofinite in \mathbb{N} , if n > 0 $U = \{n\}$. X is locally Hausdorff space.

$$\forall n \in \mathbb{Z} f(n) = n+1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

f is feebly topological contraction and closed map without fixed point.

Peripherally Hausdorff space

Definition

For every $\alpha \in On$ define a class \mathcal{F}_{α} as follows: for every \mathcal{T}_1 topological space X, we say that $X \in \mathcal{F}_{\alpha}$ is α -Hausdorff space if if $\alpha = 0$ then $X = \{x\}$ and, if $\alpha > 0$ then $\forall x \in X \exists \beta < \alpha \ [x] \in \mathcal{F}_{\beta}$ where

$$[x] = \bigcap \{ cl(U) : x \in U - \text{ is open in } X \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We say that X is peripherally Hausdorff iff $\exists \alpha \in On X \in \mathcal{F}_{\alpha}$, We have

$$\models \text{ If } \beta \leq \alpha \text{ then } \mathcal{F}_{\beta} \subseteq \mathcal{F}_{\alpha},$$

• $X \in \mathcal{F}_1$ iff X is a Hausdorff space.

Example (Niemytzki like half-plane)

Set $X = \mathbb{R} \times [0, \infty)$. Topological subbase of X is defined as follows, for points with positive second axis we equipe euclidean neighbourhoods. For points of form (x, 0) where $x \in \mathbb{R}$ and $\alpha \in (0, \pi/2)$ we define

$$U_{\alpha}(x,0) = \{(r,s) \in X : (r,s) = (x,0) \lor (s \neq |x| \land \operatorname{tg} \alpha \cdot |r| < s)\}.$$

It is easy to see that

$$[(x,y)] = \begin{cases} \{(x,y)\} \cup \{(x,0)\} & \text{ for } y > 0 \\ \mathbb{R} \times \{0\} \cup \{x\} \times (0,\infty) & \text{ for } y = 0 \end{cases},$$

A D N A 目 N A E N A E N A B N A C N

which is T_2 space. Then X is 2-Hausdorff, locally Hausdorff space but not T_2 .

Definition (Hausdorff rank)

Let X-peripherally Hausdorff space, define Hausdorff rank of X

$$rank_H(X) = min\{\alpha \in On : X \in \mathcal{F}_{\alpha}\}.$$

Theorem

For every $\alpha \in On$ there is peripherally Hausdorff space X s.t. $\alpha \leq \operatorname{rank}_{H}(X)$.

Theorem

If X, Y are peripherally Hausdorff spaces then

 $rank_H(X \times Y) = \max\{rank_H(X), rank_H(Y)\}.$

Theorem

There are peripherally Hausdorff spaces $\{X_n : n \in \omega\}$ s.t for each $n \in \omega$ rank $(X_n) = n$ and $\prod_{n \in \omega} X_n$ is not peripherally Hausdorff space.

Feebly⁺ topological contraction

Definition

Let X - topological space, then $f : X \to X$ is feebly⁺ topological contraction if for each open cover U we have

$$\forall x, y \in X \exists U \in \mathcal{U} \forall^{\infty} n \in \omega \ f^{n}[\{x, y\}] \subseteq U$$

Theorem

For every peripherally Hausdorff space X, every continuous weak⁺ topological contraction on X has unique fixed-point.

Example

$$X = \{-1\} \cup [0,1].$$

Let the base of X consist of all sets of the form:

- J∩[0,1], where J is an open interval, and
- ((L \ {0}) ∩ X) ∪ {−1}, where L is an open interval containing 0.

Let $f: X \to X$ be defined by

$$f(x) = rac{1}{2} \cdot x$$
 where $x \in [0,1]$ and $f(-1) = 0$.

Then X is a compact peripherally Hausdorff (in fact 2-Hausdorff) space and f is a continuous weak⁺ contraction but $f \subseteq X \times X$ is not closed. Of course, the point 0 is a fixed point of f.

Weak* topologies

Let X be a linear topological space, $E = \{s_1, ..., s_n\}$ be a finite set of seminorms on X, $x \in X$ and $\varepsilon > 0$. Let

$$V(x;\mathsf{E},\varepsilon):=\{z\in X:\mathsf{s}_1(x-z)<\varepsilon,\ldots,\mathsf{s}_n(x-z)<\varepsilon\}.$$

Theorem (Lebesgue's analogue lemma) *Let*

- 1. X linear space over reals,
- 2. S is a family of seminorms separating points in X,
- 3. $Y \subseteq X$ is compact in the weak topology τ determined by S,
- 4. \mathcal{U} is a τ -open cover of Y,

then then there exist a finite set $E \subseteq S$ and $\varepsilon > 0$ such that for each $x \in Y$ there exists $U \in U$ such that $V(x; E, \varepsilon) \subseteq U$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

lf

- 1. X is a linear topological space,
- 2. S is a family of seminorms on X separating points in X,
- 3. $Y \subseteq X$ is compact in the weak topology τ generated by S,
- 4. $f: Y \rightarrow Y$ is a continuous mapping in the topology τ such that

$$\forall s \in S \ \forall x, y \in Y \ \lim_{n} \mathsf{s}(f^{n}(x) - f^{n}(y)) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

then f has a unique fixed point in Y.

Theorem

Let X be a linear topological space. Let U be a neighbourhood of the zero vector in X. We define Y as

$$Y := \{x^* \in X^* : |x(x^*)| \le 1, \text{ for each } x \in U\}$$

Let $f: Y \rightarrow Y$ be a weak*-continuous mapping satisfying

$$\forall z \in X \ \forall x, y \in Y \ \lim_{n} z(f^{n}(x^{*}) - f^{n}(y^{*})) = 0$$

Then f has a unique fixed point in Y. We use the dual notation: $x(x^*) := x^*(x)$ for functionals x^* which are members of X^* and elements x of the space X.

Compact semigroups

Theorem

G is a Hausdorff compact topological monoid and
f : G → G is a continuous mapping such that for each x, y ∈ G and each neighbourhood V of the neutral element

$$\exists z \in G \ \exists n \in \mathbb{N} \ f^n(x), f^n(y) \in zV$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

then f has a unique fixed point.

Theorem If

- 1. G is a first countable Hausdorff compact topological monoid,
- 2. $f: G \to G$ is a closed mapping such that for each $x, y \in G$ and each neighbourhood V of the neutral element

$$\exists z \in G \ \exists n \in \mathbb{N} \ f^n(x), f^n(y) \in zV$$

then f has a unique fixed point.

Topological contraction

Definition

Let X be a T_1 -topological space and $f : X \to X$. We say that f is a topological contraction on X iff for every open cover \mathcal{U} of X there are $U \in \mathcal{U}$ and $n \in \omega$ s.t. $f^n[X] \subseteq U$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Weak Čech completeness

Definition

Topological T_1 space X is weak Čech complete if

- exists $\{\mathcal{U}_i: i \in \omega\}$, \mathcal{U}_i open cover of X for $i \in \omega$,
- for every centered $\{F_m \in Clo(X) : m \in \omega\}$ s.t. $\forall i \in \omega \exists m \in \omega \exists U \in U_i F_m \subseteq U$

then $\bigcap \{F_m \ m \in \omega\} \neq \emptyset$.

Theorem

If X is a T_1 weak Čech complete space and $f : X \to X$ is a closed topological contraction, then f has a unique fixed point.

Corollary

IF X is T_1 compact, $f : X \to X$ closed topological contraction, then f has a unique fixed point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example

Let (ω, τ) be T_1 topological space where

$$au = \{\emptyset\} \cup \{A \in \mathscr{P}(\omega) : A^c \text{ is finite } \}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Then $\omega \ni n \mapsto f(n) = n + 1 \in \omega$ is a continuous, topological contraction without any fixed point, (f is not closed map !!!).

Lipschitz contraction is continuous but topological not neccessary.

Example

Let $X = \{1/n : n \in \mathbb{N}\} \cup \{0, 2, 3\}$ be endowed with the usual Euclidean metric from the real line. Let for $x \in X$:

$$f(x) := \begin{cases} 2 & \text{if } x = 1/n, \\ 3 & \text{if } x = 0, 2, 3. \end{cases}$$

The mapping f is a closed topological contraction because $f^2[X] = \{3\}$; it is closed because $f[X] = \{2,3\}$; and it is not continuous because

$$f\left(\lim_{n}\frac{1}{n}\right)=f(0)=3\neq 2=\lim_{n}f\left(\frac{1}{n}\right).$$

Here fixed point here is 3. Moreover, $f \subseteq X \times X$ is not closed set.

- R. Engelking, General Topology, Państwowe Wydawnictwo Naukowe, Warszawa 1977.
- I. Kupka, Topological conditions for the existence of fixed point. Mathematica Slovaca 48 (1998), no 3, pp. 315-321.
- M. Morayne and R. Rałowski, M. Morayne, The Baire Theorem, an Analogue of the Banach Fixed Point Theorem and Attractors in Compact Spaces, Bulletin des Sciences Mathematiques, vol. 183, (2023), https://doi.org/10.1016/j.bulsci.2023.103231
- M. Morayne. R. Rałowski, Fixed point theorems for topological contractions and the Hutchinson operator, https://arxiv.org/pdf/2308.02717.pdf

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank You

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ