*operation and microscopic sets

Daria Perkowska

Wrocław University of Science and Technology

Let (X, +) be an abelian group. For $A, B \subseteq X$ we write

$$A+B=\{a+b:a\in A,b\in B\}.$$

Definition of *operation

For a family $\mathcal{F} \subseteq \mathcal{P}(X)$ let:

$$\mathcal{F}^* = \{ A \subseteq X : \forall_{F \in \mathcal{F}} A + F \neq X \}.$$

Theorem

- $\mathcal{G} \subseteq \mathcal{F}^* \Rightarrow \mathcal{F} \subseteq \mathcal{G}^*$
- $\mathcal{F} \subseteq \mathcal{F}^{**}$
- $\mathcal{G} \subseteq \mathcal{F} \Longrightarrow \mathcal{F}^* \subseteq \mathcal{G}^*$
- \mathcal{F}^* is closed under taking subsets and translation invariant

When for a family of sets we have $\mathcal{I} = \mathcal{I}^{**}$?

When for a family of sets we have $\mathcal{I} = \mathcal{I}^{**}$?

Theorem(Horbaczewska, Lindner)

For any $\mathcal{F} \subseteq \mathcal{P}(X)$ the following conditions are equivalent:

•
$$\forall_{A \notin \mathcal{F}} (\mathcal{F} \cup \{A\})^* \neq \mathcal{F}^*$$

• $\mathcal{F} = \mathcal{F}^{**}$

When for a family of sets we have $\mathcal{I} = \mathcal{I}^{**}$?

Theorem(Horbaczewska, Lindner)

For any $\mathcal{F} \subseteq \mathcal{P}(X)$ the following conditions are equivalent:

•
$$\forall_{A \notin \mathcal{F}} (\mathcal{F} \cup \{A\})^* \neq \mathcal{F}^*$$

• $\mathcal{F} = \mathcal{F}^{**}$

Theorem

If
$$I = J^*$$
 for some family J then $I = I^{**}$

Theorem

If $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation and reflection invariant proper σ -ideal with $cof(\mathcal{J}) \leq \mathfrak{c}$, $add(\mathcal{J}) = \mathfrak{c}$ and $A \notin \mathcal{J}$, then

 $(\mathcal{J} \cup \{A\})^* \neq \mathcal{J}^*$

Theorem

If $\mathcal{J} \subseteq \mathcal{P}(2^{\omega})$ is a translation and reflection invariant proper σ -ideal with $cof(\mathcal{J}) \leq \mathfrak{c}$, $add(\mathcal{J}) = \mathfrak{c}$ and $A \notin \mathcal{J}$, then

 $(\mathcal{J} \cup \{A\})^* \neq \mathcal{J}^*$

Proof

Take family $\mathcal{F} \subseteq \mathcal{J}$ of subsets of X with $card \mathcal{F} = \mathfrak{c}$ such that for every set $I \in \mathcal{J}$ there exists a set $F \in \mathcal{F}$ covering I ($I \subseteq F$). Let $\{z_{\alpha}\}_{\alpha < \mathfrak{c}}$ be an enumeration of 2^{ω} and let $\{F_{\alpha}\}_{\alpha < \mathfrak{c}}$ be an enumeration of all sets from \mathcal{F} . We build sequences of $\{x_{\alpha}\}_{\alpha < \mathfrak{c}}$ and $\{r_{\alpha}\}_{\alpha < \mathfrak{c}}$. Take two different x_0 and r_0 . Let $\lambda < \mathfrak{c}$. Suppose that we already constructed $\{x_{\alpha}\}_{\alpha < \lambda}$ and $\{r_{\alpha}\}_{\alpha < \lambda}$ and define x_{λ} and r_{λ} . Since $\bigcup_{\alpha_1, \alpha_2 < \lambda} (F_{\alpha_1} + x_{\alpha_2}) \neq 2^{\omega}$, we can choose $r_{\lambda} \notin \bigcup_{\alpha_1, \alpha_2 < \lambda} (F_{\alpha_1} + x_{\alpha_2})$.

Proof.

Let $B_{\lambda} = 2^{\omega} \setminus \bigcup_{\alpha_1, \alpha_2 \leq \lambda} (r_{\alpha_1} - F_{\alpha_2})$. Then $2^{\omega} \setminus B_{\lambda} \in \mathcal{J}$. Obviously $2^{\omega} \setminus (z_{\lambda} - B_{\lambda}) = z_{\lambda} - (2^{\omega} \setminus B_{\lambda}) \in \mathcal{J}$. Since $A \notin \mathcal{J}$, then $A \notin 2^{\omega} \setminus (z_{\lambda} - B_{\lambda})$, so $A \cap (z_{\lambda} - B_{\lambda}) \neq \emptyset$. Hence, there are $a_{\lambda} \in A$ and $b_{\lambda} \in B_{\lambda}$ such that $z_{\lambda} - b_{\lambda} = a_{\lambda}$. Let $x_{\lambda} = b_{\lambda}$. Using this procedure, for every $\lambda < \mathfrak{c}$, we define $X = \{x_{\alpha}\}_{\alpha < \mathfrak{c}}$. Since $A + X = 2^{\omega}$, the set X does not belong to $(\mathcal{J} \cup \{A\})^*$. On the other hand, for $\alpha < \mathfrak{c}$ choosing $\lambda > \alpha$ we have $r_{\lambda} \notin X + F_{\alpha}$, so $X \in \mathcal{J}^*$.

Proof.

Let $B_{\lambda} = 2^{\omega} \setminus \bigcup_{\alpha_1, \alpha_2 \leqslant \lambda} (r_{\alpha_1} - F_{\alpha_2})$. Then $2^{\omega} \setminus B_{\lambda} \in \mathcal{J}$. Obviously $2^{\omega} \setminus (z_{\lambda} - B_{\lambda}) = z_{\lambda} - (2^{\omega} \setminus B_{\lambda}) \in \mathcal{J}$. Since $A \notin \mathcal{J}$, then $A \notin 2^{\omega} \setminus (z_{\lambda} - B_{\lambda})$, so $A \cap (z_{\lambda} - B_{\lambda}) \neq \emptyset$. Hence, there are $a_{\lambda} \in A$ and $b_{\lambda} \in B_{\lambda}$ such that $z_{\lambda} - b_{\lambda} = a_{\lambda}$. Let $x_{\lambda} = b_{\lambda}$. Using this procedure, for every $\lambda < \mathfrak{c}$, we define $X = \{x_{\alpha}\}_{\alpha < \mathfrak{c}}$. Since $A + X = 2^{\omega}$, the set X does not belong to $(\mathcal{J} \cup \{A\})^*$. On the other hand, for $\alpha < \mathfrak{c}$ choosing $\lambda > \alpha$ we have $r_{\lambda} \notin X + F_{\alpha}$, so $X \in \mathcal{J}^*$.

Question

Can we reverse this implication?

Strong measure zero sets

A set $A \subseteq \mathbb{R}$ has a strong zero measure when for every sequence (ε_n) of positive reals there exists a sequence (I_n) of intervals such that $|I_n| \leq \varepsilon_n$ and A is contained in the union of I_n .

Strong measure zero sets

A set $A \subseteq \mathbb{R}$ has a strong zero measure when for every sequence (ε_n) of positive reals there exists a sequence (I_n) of intervals such that $|I_n| \leq \varepsilon_n$ and A is contained in the union of I_n .

Strong measure zero sets but on Cantor

A set $A \subseteq 2^{\omega}$ has a strong zero measure when for every sequence (k_n) of natural numbers there exists a sequence (σ_n) of intervals such that $|\sigma_n| = kn$ and $A \subseteq \bigcup [\sigma_n]$.

Strongly meager sets

A set $X \subseteq 2^{\omega}$ is strongly meager if for every measure zero set H it holds that $X + H \neq 2^{\omega}$.

Strongly meager sets

A set $X \subseteq 2^{\omega}$ is strongly meager if for every measure zero set H it holds that $X + H \neq 2^{\omega}$.

So using *operation we can write

 $\mathcal{SM}=\mathcal{N}^*$

Theorem (Galvin-Mycielski-Solovay)

A set $X \subseteq \mathbb{R}$ is strongly measure zero if and only if for every meager set H it holds that $X + H \neq \mathbb{R}$.

Theorem (Galvin-Mycielski-Solovay)

A set $X \subseteq \mathbb{R}$ is strongly measure zero if and only if for every meager set H it holds that $X + H \neq \mathbb{R}$.

Galvin-Mycielski-Solovay Theorem also works on Cantos space.

Theorem (Galvin-Mycielski-Solovay)

A set $X \subseteq \mathbb{R}$ is strongly measure zero if and only if for every meager set H it holds that $X + H \neq \mathbb{R}$.

Galvin-Mycielski-Solovay Theorem also works on Cantos space. So using *operation we can write

$$\mathcal{SMZ}=\mathcal{M}^*$$

Borel Conjecture

 $\mathcal{SMZ}=\textit{Count}$

dual Borel Conjecture

 $\mathcal{SM}=\textit{Count}$

Borel Conjecture

 $\mathcal{SMZ} = Count$

dual Borel Conjecture

 $\mathcal{SM} = Count$

Corollary

- Borel Conjecture $\Longrightarrow \mathcal{M} \neq \mathcal{M}^{**}$
- dual Borel Conjecture $\Longrightarrow \mathcal{N} \neq \mathcal{N}^{**}$

Definition

We say that a set $X \subseteq \mathbb{R}$ is microscopic ($X \in Micro$) if for all ε there exists a sequence (I_n) such that $|I_n| = \varepsilon^n$ and $X \subseteq \bigcup [I_n]$.

Definition

We say that a set $X \subseteq \mathbb{R}$ is microscopic ($X \in Micro$) if for all ε there exists a sequence (I_n) such that $|I_n| = \varepsilon^n$ and $X \subseteq \bigcup [I_n]$.

Definition

We say that a set $X \subseteq 2^{\omega}$ is microscopic ($X \in Micro$) if for all $k \in \mathbb{N}$ there exists a sequence (σ_n) such that $|\sigma_n| = kn$ and $X \subseteq \bigcup [\sigma_n]$.

Definition

We say that a set $X \subseteq \mathbb{R}$ is microscopic ($X \in Micro$) if for all ε there exists a sequence (I_n) such that $|I_n| = \varepsilon^n$ and $X \subseteq \bigcup [I_n]$.

Definition

We say that a set $X \subseteq 2^{\omega}$ is microscopic ($X \in Micro$) if for all $k \in \mathbb{N}$ there exists a sequence (σ_n) such that $|\sigma_n| = kn$ and $X \subseteq \bigcup [\sigma_n]$.

Of course, we have $\mathcal{SMZ} \subseteq \textit{Micro} \subseteq \mathcal{N}$

Definition

We say that $X \subseteq \mathbb{R}$ is porous $(X \in \mathcal{P})$ if there exists $\alpha \in (0,1)$ for every $x \in \mathbb{R}$ there exists y such that $B(y, \alpha r) \subseteq B(x, r)$ and $B(y, \alpha r) \cap X = \emptyset$

Definition

We say that $X \subseteq \mathbb{R}$ is porous $(X \in \mathcal{P})$ if there exists $\alpha \in (0,1)$ for every $x \in \mathbb{R}$ there exists y such that $B(y, \alpha r) \subseteq B(x, r)$ and $B(y, \alpha r) \cap X = \emptyset$

Definition

We say that $X \subseteq 2^{\omega}$ is porous $(X \in \mathcal{P})$ if there exists k for every $\alpha \in 2^m$ there exists $\beta \in 2^{m+k}$, $\alpha \subseteq \beta$ and $[\beta] \cap X = \emptyset$

Definition

We say that $X \subseteq \mathbb{R}$ is porous $(X \in \mathcal{P})$ if there exists $\alpha \in (0,1)$ for every $x \in \mathbb{R}$ there exists y such that $B(y, \alpha r) \subseteq B(x, r)$ and $B(y, \alpha r) \cap X = \emptyset$

Definition

We say that $X \subseteq 2^{\omega}$ is porous $(X \in \mathcal{P})$ if there exists k for every $\alpha \in 2^m$ there exists $\beta \in 2^{m+k}$, $\alpha \subseteq \beta$ and $[\beta] \cap X = \emptyset$

Of course we have $\mathcal{P} \subseteq \mathcal{M}$

Theorem

 $X \in Micro \Longrightarrow \forall E \in \mathcal{P} \ X + E \neq 2^{\omega}$

Proof.

Theorem

If $E \in \mathcal{P}$, then there exists $k \in \mathbb{N}$ such that for all $m \in \mathbb{N}$ and $\alpha \in 2^m$ and every $\tau \in 2^{m+k}$, there exists $\beta \in 2^{m+k}$ such that such that $\alpha \subseteq \beta$ and $([\tau] + [\beta]) \cap E = \emptyset$

Theorem

 $X \in Micro \Longrightarrow \forall E \in \mathcal{P} \ X + E \neq 2^{\omega}$

Proof.

Theorem

If $E \in \mathcal{P}$, then there exists $k \in \mathbb{N}$ such that for all $m \in \mathbb{N}$ and $\alpha \in 2^m$ and every $\tau \in 2^{m+k}$, there exists $\beta \in 2^{m+k}$ such that such that $\alpha \subseteq \beta$ and $([\tau] + [\beta]) \cap E = \emptyset$

Let $E \in \mathcal{P}$. Take $k \in \mathbb{N}$ from the Theorem above. Take $X \in Mic$ and the sequence of (σ_n) such that $|\sigma_n| = (n+1)k$ and $X \subseteq \bigcup[\sigma_n]$. From Theorem there exist $[\tau_n] \in 2^{(n+1)k}$ for every $[\sigma_n]$ such that $[\sigma_n] + [\tau_n] \cap E = \emptyset$. Let $y = \bigcup_n \tau_n$, then $(X + y) \cap E = \emptyset$