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Let (X ,+) be an abelian group. For A,B ⊆ X we write

A+ B = {a+ b : a ∈ A, b ∈ B}.

Definition of *operation

For a family F ⊆ P(X ) let:

F∗ = {A ⊆ X : ∀F∈FA+ F ̸= X}.
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Theorem
• G ⊆ F∗ ⇒ F ⊆ G∗

• F ⊆ F∗∗

• G ⊆ F =⇒ F∗ ⊆ G∗

• F∗ is closed under taking subsets and translation invariant
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When for a family of sets we have I = I∗∗?

Theorem(Horbaczewska, Lindner)

For any F ⊆ P(X ) the following conditions are equivalent:
• ∀A/∈F (F ∪ {A})∗ ̸= F∗

• F = F∗∗

Theorem

If I = J∗ for some family J then I = I ∗∗
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Theorem

If J ⊆ P(2ω) is a translation and reflection invariant proper σ-ideal with
cof (J ) ⩽ c, add(J ) = c and A /∈ J , then

(J ∪ {A})∗ ̸= J ∗

Proof

Take family F ⊆ J of subsets of X with cardF = c such that for every set
I ∈ J there exists a set F ∈ F covering I (I ⊆ F ).
Let {zα}α<c be an enumeration of 2ω and let {Fα}α<c be an enumeration
of all sets from F . We build sequences of {xα}α<c and {rα}α<c.Take two
different x0 and r0. Let λ < c. Suppose that we already constructed
{xα}α<λ and {rα}α<λ and define xλ and rλ. Since⋃

α1,α2<λ(Fα1 + xα2) ̸= 2ω, we can choose rλ /∈
⋃

α1,α2<λ(Fα1 + xα2).

7 / 28



Theorem

If J ⊆ P(2ω) is a translation and reflection invariant proper σ-ideal with
cof (J ) ⩽ c, add(J ) = c and A /∈ J , then

(J ∪ {A})∗ ̸= J ∗

Proof

Take family F ⊆ J of subsets of X with cardF = c such that for every set
I ∈ J there exists a set F ∈ F covering I (I ⊆ F ).
Let {zα}α<c be an enumeration of 2ω and let {Fα}α<c be an enumeration
of all sets from F . We build sequences of {xα}α<c and {rα}α<c.Take two
different x0 and r0. Let λ < c. Suppose that we already constructed
{xα}α<λ and {rα}α<λ and define xλ and rλ. Since⋃

α1,α2<λ(Fα1 + xα2) ̸= 2ω, we can choose rλ /∈
⋃

α1,α2<λ(Fα1 + xα2).

8 / 28



Proof.

Let Bλ = 2ω\
⋃

α1,α2⩽λ(rα1 − Fα2). Then 2ω\Bλ ∈ J . Obviously
2ω\(zλ −Bλ) = zλ − (2ω\Bλ) ∈ J . Since A /∈ J , then A ⊈ 2ω\(zλ −Bλ),
so A ∩ (zλ − Bλ) ̸= ∅. Hence, there are aλ ∈ A and bλ ∈ Bλ such that
zλ − bλ = aλ. Let xλ = bλ. Using this procedure, for every λ < c, we
define X = {xα}α<c. Since A+ X = 2ω, the set X does not belong to
(J ∪ {A})∗. On the other hand, for α < c choosing λ > α we have
rλ /∈ X + Fα, so X ∈ J ∗.

Question

Can we reverse this implication?
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Strong measure zero sets

A set A ⊆ R has a strong zero measure when for every sequence (εn) of
positive reals there exists a sequence (In) of intervals such that |In| ⩽ εn
and A is contained in the union of In.

Strong measure zero sets but on Cantor

A set A ⊆ 2ω has a strong zero measure when for every sequence (kn) of
natural numbers there exists a sequence (σn) of intervals such that
|σn| = kn and A ⊆

⋃
[σn] .
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Strongly meager sets

A set X ⊆ 2ω is strongly meager if for every measure zero set H it holds
that X + H ̸= 2ω.

So using *operation we can write

SM = N ∗
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Theorem (Galvin-Mycielski-Solovay)

A set X ⊆ R is strongly measure zero if and only if for every meager set H
it holds that X + H ̸= R.

Galvin-Mycielski-Solovay Theorem also works on Cantos space.
So using *operation we can write

SMZ = M∗
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Borel Conjecture

SMZ = Count

dual Borel Conjecture

SM = Count

Corollary

• Borel Conjecture =⇒ M ≠ M∗∗

• dual Borel Conjecture =⇒ N ≠ N ∗∗
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19 / 28



Can we formulate a similar theorem for other ideals?

Definition

We say that a set X ⊆ R is microscopic (X ∈ Micro) if for all ε there
exists a sequence (In) such that |In| = εn and X ⊆

⋃
[In].

Definition

We say that a set X ⊆ 2ω is microscopic (X ∈ Micro) if for all k ∈ N
there exists a sequence (σn) such that |σn| = kn and X ⊆

⋃
[σn].

Of course, we have SMZ ⊆ Micro ⊆ N

20 / 28



Can we formulate a similar theorem for other ideals?

Definition

We say that a set X ⊆ R is microscopic (X ∈ Micro) if for all ε there
exists a sequence (In) such that |In| = εn and X ⊆

⋃
[In].

Definition

We say that a set X ⊆ 2ω is microscopic (X ∈ Micro) if for all k ∈ N
there exists a sequence (σn) such that |σn| = kn and X ⊆

⋃
[σn].

Of course, we have SMZ ⊆ Micro ⊆ N

21 / 28



Can we formulate a similar theorem for other ideals?

Definition

We say that a set X ⊆ R is microscopic (X ∈ Micro) if for all ε there
exists a sequence (In) such that |In| = εn and X ⊆

⋃
[In].

Definition

We say that a set X ⊆ 2ω is microscopic (X ∈ Micro) if for all k ∈ N
there exists a sequence (σn) such that |σn| = kn and X ⊆

⋃
[σn].

Of course, we have SMZ ⊆ Micro ⊆ N

22 / 28



Can we formulate a similar theorem for other ideals?

Definition

We say that a set X ⊆ R is microscopic (X ∈ Micro) if for all ε there
exists a sequence (In) such that |In| = εn and X ⊆

⋃
[In].

Definition

We say that a set X ⊆ 2ω is microscopic (X ∈ Micro) if for all k ∈ N
there exists a sequence (σn) such that |σn| = kn and X ⊆

⋃
[σn].

Of course, we have SMZ ⊆ Micro ⊆ N

23 / 28



Definition

We say that X ⊆ R is porous (X ∈ P) if there exists α ∈ (0, 1) for every
x ∈ R there exists y such that B(y , αr) ⊆ B(x , r) and B(y , αr) ∩ X = ∅

Definition

We say that X ⊆ 2ω is porous (X ∈ P) if there exists k for every α ∈ 2m

there exists β ∈ 2m+k , α ⊆ β and [β] ∩ X = ∅

Of course we have P ⊆ M
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Theorem

X ∈ Micro =⇒ ∀E ∈ P X + E ̸= 2ω

Proof.

Theorem

If E ∈ P, then there exists k ∈ N such that for all m ∈ N and α ∈ 2m and
every τ ∈ 2m+k , there exists β ∈ 2m+k such that such that α ⊆ β and
([τ ] + [β]) ∩ E = ∅

Let E ∈ P. Take k ∈ N from the Theorem above. Take X ∈ Mic and the
sequence of (σn) such that |σn| = (n + 1)k and X ⊆

⋃
[σn]. From

Theorem there exist [τn] ∈ 2(n+1)k for every [σn] such that
[σn] + [τn] ∩ E = ∅. Let y =

⋃
n τn, then (X + y) ∩ E = ∅
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