Introduction Results on the reals Results on higher analogues of the reals

Infinite-Exponent Partition Relations on Linear Orders

Lyra Gardiner

University of Cambridge

Winter School, Hejnice 31st of January, 2025

Contains joint work with Thilo Weinert and Jonathan Schilhan

Definition: Order Type

A (linear) order type is an isomorphism class of linear orders. We will use the letters σ and τ for arbitrary linear order types.

Addition and multiplication of order types is done exactly as for ordinals. The relation $\sigma \leq \tau$ means σ embeds into τ . The reverse of τ is denoted τ^* .

Notation: Copies of au in $\langle L, < \rangle$

For $\langle L, <
angle$ a linear order, au a linear order type, write

 $[\langle L, < \rangle]^{\tau} := \{A \subseteq L : \langle A, < \rangle \text{ is ordered as } \tau\}.$

Definition: Order Type

A *(linear) order type* is an isomorphism class of linear orders. We will use the letters σ and τ for arbitrary linear order types.

Addition and multiplication of order types is done exactly as for ordinals. The relation $\sigma \leq \tau$ means σ embeds into τ . The reverse of τ is denoted τ^* .

Notation: Copies of τ in $\langle L, < \rangle$

For $\langle L, < \rangle$ a linear order, τ a linear order type, write

 $[\langle L, < \rangle]^{\tau} \coloneqq \{A \subseteq L : \langle A, < \rangle \text{ is ordered as } \tau\}.$

Notation and definitions Background

The partition relation symbol

Definition: Partition Relation Symbol

For $\langle {\it L}, < \rangle$ a linear order, σ , τ linear order types, and χ a set,

 $\langle L, < \rangle \rightarrow (\sigma)^{\tau}_{\chi}$

is the statement that for any $F : [\langle L, < \rangle]^{\tau} \to \chi$, thought of as a *colouring* of the copies of τ in $\langle L, < \rangle$ with χ colours, there is some $H \in [\langle L, < \rangle]^{\sigma}$ which is *homogeneous* or *monochromatic* for F, in the sense that $|F " [\langle H, < \rangle]^{\tau}| = 1$.

When χ is omitted, it is understood to equal 2. Roughly speaking, in ZFC, relations whose exponent τ is infinite are all either false or trivial, so our base theory throughout will be ZF. Introduction Results on the reals Results on higher analogues of the reals

A lot of work has been done on infinite-exponent partition relations on ordinals:

Theorem (Mathias) In Solovay's model, $\omega
ightarrow (\omega)^{\omega}.$

Theorem (Martin)

In ZF + AD,

 $\omega_1 \rightarrow (\omega_1)^{\omega_1}.$

Results on ${\mathbb R}$

Theorem (G.)

The only statements of the form $\langle \mathbb{R}, < \rangle \rightarrow (\tau)^{\tau}$ with τ a countably infinite order type which can hold in ZF are those in which τ is one of the order types $\omega + k$ or $k + \omega^*$ for some $k \in \omega$, and for these τ ,

$$\langle \mathbb{R}, < \rangle \rightarrow (\tau)^{\tau} \iff \omega \rightarrow (\omega)^{\omega}.$$

Theorem (G.)

Relative to an inaccessible cardinal, it is consistent with ZF that $\langle \mathbb{R}, < \rangle \not\rightarrow (\tau)^{\tau}$ for all uncountable order types τ . Moreover, this is the case iff there are no infinite exact sets of reals.

A linear order $\langle L, < \rangle$ is *exact* if it has no proper suborder which is order-isomorphic to it.

Results on ${\mathbb R}$

Theorem (G.)

The only statements of the form $\langle \mathbb{R}, < \rangle \rightarrow (\tau)^{\tau}$ with τ a countably infinite order type which can hold in ZF are those in which τ is one of the order types $\omega + k$ or $k + \omega^*$ for some $k \in \omega$, and for these τ ,

$$\langle \mathbb{R}, < \rangle \rightarrow (\tau)^{\tau} \iff \omega \rightarrow (\omega)^{\omega}.$$

Theorem (G.)

Relative to an inaccessible cardinal, it is consistent with ZF that $\langle \mathbb{R}, < \rangle \not\rightarrow (\tau)^{\tau}$ for all uncountable order types τ . Moreover, this is the case iff there are no infinite exact sets of reals.

A linear order $\langle L, < \rangle$ is *exact* if it has no proper suborder which is order-isomorphic to it.

Main results A failure of monotonicity

Larger homogeneous sets

If $\omega \to (\omega)^{\omega}$, we in fact have $\langle \mathbb{R}, < \rangle \to (\omega + n)^{\omega + k}$ for all naturals $k \leq n$. For the most part, we cannot guarantee larger homogeneous sets than this:

Proposition (G.)

•
$$\langle \mathbb{R}, < \rangle \not\rightarrow (\omega + \omega)^{\omega}$$

•
$$\langle \mathbb{R}, <
angle
eq (\omega + \omega)^{\omega + k}$$
 for $2 \leq k < \omega$

However:

Proposition (G., Schilhan)

```
\langle \mathbb{R}, < \rangle \rightarrow (\omega + \omega)^{\omega + 1} in Solovay's model.
```

Main results A failure of monotonicity

Larger homogeneous sets

If $\omega \to (\omega)^{\omega}$, we in fact have $\langle \mathbb{R}, < \rangle \to (\omega + n)^{\omega + k}$ for all naturals $k \leq n$. For the most part, we cannot guarantee larger homogeneous sets than this:

Proposition (G.)

•
$$\langle \mathbb{R}, < \rangle \not\rightarrow (\omega + \omega)^{\omega}$$

•
$$\langle \mathbb{R}, <
angle
eq (\omega + \omega)^{\omega + k}$$
 for $2 \leq k < \omega$

However:

Proposition (G., Schilhan)

$$\langle \mathbb{R}, <
angle
ightarrow (\omega + \omega)^{\omega + 1}$$
 in Solovay's model.

Higher analogues of the reals

We next looked at orders of the form $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle$ for α an arbitrary infinite ordinal. Write $\zeta = \omega^* + \omega$ for the order type of $\langle \mathbb{Z}, < \rangle$.

Proposition (Kruse?)

For all ordinals α ,

 $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\zeta)^3.$

The same proof gives $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\zeta)^{\omega}$ and $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\zeta)^{\omega^*}$. If we increase the exponent further, however:

Proposition (Kruse?)

For all ordinals α ,

$$\langle {}^{lpha}2,<_{\mathsf{lex}}
angle
eq(\zeta)^3.$$

Proposition (G., Weinert)

$$\label{eq:ln ZF + AD, if $\alpha \geq \omega_1$,} $ \ \langle^{\alpha} 2, <_{\mathsf{lex}} \rangle \to (\zeta)^{\zeta}$.$$

This is a consequence of a more general result:

Theorem (G., Weinert)

In ZF + AD, if $\alpha \ge \omega_1$ and τ is any countable order type with $\omega \omega^* \not\le \tau$ and $\omega^* \omega \not\le \tau$, $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\tau)^{\tau}$.

Proposition (Kruse?)

For all ordinals α ,

$$\langle {}^{lpha}2,<_{\mathsf{lex}}
angle
eq(\zeta)^3.$$

Proposition (G., Weinert)

In ZF + AD, if
$$\alpha \ge \omega_1$$
, $\langle^{\alpha} 2, <_{\mathsf{lex}} \rangle \to (\zeta)^{\zeta}$.

This is a consequence of a more general result:

Theorem (G., Weinert)

In ZF + AD, if $\alpha \geq \omega_1$ and τ is any countable order type with $\omega\omega^* \not\leq \tau$ and $\omega^*\omega \not\leq \tau$, $\langle^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\tau)^{\tau}$.

$\zeta \ \omega\omega^* \text{ and } \omega^*\omega$

What happens if τ does embed one of $\omega\omega^*$ or $\omega^*\omega$?

Proposition (G.)

For all ordinals α , if τ is any of $\omega\omega^*$, $\omega^*\omega$, $\omega\zeta$, $\omega^*\zeta$, or ζ^2 , $\langle^{\alpha}2, <_{\mathsf{lex}}\rangle \not\rightarrow (\tau)^{\tau}$.

The colourings witnessing the failures of these relations are essentially all the same colouring, but this colouring does *not* give a failure of the relation for $\tau = \zeta \omega$ or $\tau = \zeta \omega^*$.

Question

Is it consistent that $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\zeta \omega)^{\zeta \omega}$ (equivalently, that $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\zeta \omega^*)^{\zeta \omega^*}$) for some α ?

 $\zeta \ \omega \omega^* \ {
m and} \ \omega^* \omega$

What happens if τ does embed one of $\omega\omega^*$ or $\omega^*\omega$?

Proposition (G.)

For all ordinals α , if τ is any of $\omega\omega^*$, $\omega^*\omega$, $\omega\zeta$, $\omega^*\zeta$, or ζ^2 , $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\tau)^{\tau}.$

The colourings witnessing the failures of these relations are essentially all the same colouring, but this colouring does *not* give a failure of the relation for $\tau = \zeta \omega$ or $\tau = \zeta \omega^*$.

Question

Is it consistent that $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\zeta \omega)^{\zeta \omega}$ (equivalently, that $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\zeta \omega^*)^{\zeta \omega^*}$) for some α ?

Thank you!

