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Theorem (Hurewicz-Rectaw)

X is Hurewicz < every continuous image of X in w* is bounded.
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Theorem (Hurewicz-Rectaw)

m X is Menger < no continuous image of X in w* is dominaiting.
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Let cfd =0 and X contain a 0-unbounded set. Then there are an ultrafilter U
and a b(U)-scale Y such that X x (Y UFin) is not Menger.

Theorem (Szewczak-Tsaban)

Let U be an ultrafilter, X is Hurewicz and Y is a b(U)-scale. Then
X x (Y UFin) is Scheepers.
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Scheepers implies Menger — contradiction [J
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