Productivity of selective covering properties

Marta Kładź-Duda

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics

Hejnice 2025

joint work with Piotr Szewczak and Lyubomyr Zdomskyy

The research was funded by the National Science Center, Poland and the Austrian Science Found under the Weave-UNISONO call in the Weave programme

Project: Set-theoretic aspects of topological selections 2021/03/Y/ST1/00122

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ -cover of X \mathcal{U} is infinite and $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ -cover of X \mathcal{U} is infinite and $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$

Ω: all ω-covers of X $X \notin \mathcal{U}$, for finite $F \subseteq X$ there is $U \in \mathcal{U}$ such that $F \subseteq U$

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ-cover of X \mathcal{U} is infinite and $\{U ∈ \mathcal{U} : x \notin U\}$ is finite for all x ∈ X

Ω: all ω-covers of X $X \notin \mathcal{U}$, for finite $F \subseteq X$ there is $U \in \mathcal{U}$ such that $F \subseteq U$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ -cover of X \mathcal{U} is infinite and $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$

 Ω : all ω -covers of X $X \notin \mathcal{U}$, for finite $F \subseteq X$ there is $U \in \mathcal{U}$ such that $F \subseteq U$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Scheepers: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega \} \in \Omega$

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ -cover of X \mathcal{U} is infinite and $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$

 Ω : all ω -covers of X $X \notin \mathcal{U}$, for finite $F \subseteq X$ there is $U \in \mathcal{U}$ such that $F \subseteq U$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Scheepers: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega \} \in \Omega$

 $\text{Menger: }\forall\,\mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{O}\ \exists\ \text{finite}\ \mathcal{F}_0\subseteq\mathcal{U}_0,\mathcal{F}_1\subseteq\mathcal{U}_1,\ldots\big\{\bigcup\mathcal{F}_n:n\in\omega\big\}\in\mathcal{O}$

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ -cover of X \mathcal{U} is infinite and $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$

 Ω : all ω -covers of X $X \notin \mathcal{U}$, for finite $F \subseteq X$ there is $U \in \mathcal{U}$ such that $F \subseteq U$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Scheepers: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega \} \in \Omega$

 $\text{Menger: }\forall\,\mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{O}\,\exists\,\text{finite }\mathcal{F}_0\subseteq\mathcal{U}_0,\mathcal{F}_1\subseteq\mathcal{U}_1,\ldots\big\{\bigcup\mathcal{F}_n:n\in\omega\,\big\}\in\mathcal{O}$

 σ -compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger

 \mathcal{O} : all open covers of $X \subseteq 2^{\omega}$

Γ: all γ -cover of X \mathcal{U} is infinite and $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$

 Ω : all ω -covers of X $X \notin \mathcal{U}$, for finite $F \subseteq X$ there is $U \in \mathcal{U}$ such that $F \subseteq U$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists$ finite $\mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Scheepers: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega \} \in \Omega$

Menger: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega \} \in \mathcal{O}$

 σ -compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger

Theorem (Hurewicz-Recław)

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Theorem (Hurewicz-Recław)

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Theorem (Hurewicz-Recław)

$$U_{n}^{m} = \left\{ x \in X : f(x)(n) = m \right\}$$

$$U_{6}^{0} \quad U_{6}^{1} \quad U_{6}^{2} \quad U_{6}^{3} \quad U_{6}^{4} \quad U_{6}^{5} \quad U_{6}^{6} \quad U_{6}^{7}$$

$$U_{5}^{0} \quad U_{5}^{1} \quad U_{5}^{2} \quad U_{5}^{3} \quad U_{5}^{4} \quad U_{5}^{5} \quad U_{5}^{5} \quad U_{5}^{7}$$

$$U_{4}^{0} \quad U_{4}^{1} \quad U_{4}^{2} \quad U_{4}^{2} \quad U_{4}^{3} \quad U_{4}^{4} \quad U_{5}^{4} \quad U_{4}^{6} \quad U_{4}^{7}$$

$$U_{3}^{0} \quad U_{3}^{1} \quad U_{3}^{2} \quad U_{3}^{3} \quad U_{3}^{4} \quad U_{5}^{5} \quad U_{6}^{6} \quad U_{7}^{7}$$

$$U_{2}^{0} \quad U_{2}^{1} \quad U_{2}^{2} \quad U_{2}^{2} \quad U_{2}^{2} \quad U_{2}^{5} \quad U_{5}^{5} \quad U_{6}^{6} \quad U_{7}^{7}$$

$$U_{0}^{1} \quad U_{1}^{1} \quad U_{1}^{2} \quad U_{1}^{3} \quad U_{1}^{4} \quad U_{5}^{1} \quad U_{6}^{1} \quad U_{7}^{1}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{5}^{5} \quad U_{6}^{6} \quad U_{7}^{7}$$

$$U_{0} \quad U_{1} \quad U_{2} \quad U_{3} \quad U_{4} \quad U_{5} \quad U_{6} \quad U_{7}$$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Theorem (Hurewicz-Recław)

$$U_{n}^{m} = \left\{ x \in X : f(x)(n) = m \right\}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{2}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{5} \quad U_{0}^{7}$$

$$U_{0}^{4} \quad U_{1}^{4} \quad U_{4}^{2} \quad U_{4}^{3} \quad U_{4}^{4} \quad U_{4}^{4} \quad U_{4}^{4} \quad U_{4}^{4}$$

$$U_{0}^{3} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{2} \quad U_{0}^{2} \quad U_{0}^{2} \quad U_{0}^{2} \quad U_{0}^{2}$$

$$U_{0}^{1} \quad U_{1}^{1} \quad U_{1}^{2} \quad U_{1}^{3} \quad U_{1}^{4} \quad U_{1}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0} \quad U_{1} \quad U_{2} \quad U_{2} \quad U_{3} \quad U_{4} \quad U_{5} \quad U_{6} \quad U_{7}$$

$$U_{0} \quad U_{1} \quad U_{2} \quad U_{3} \quad U_{4} \quad U_{5} \quad U_{6} \quad U_{7}$$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Theorem (Hurewicz-Recław)

$$U_{n}^{m} = \left\{ x \in X : f(x)(n) = m \right\}$$

$$U_{6}^{0} \quad U_{6}^{1} \quad U_{6}^{2} \quad U_{6}^{3} \quad U_{6}^{4} \quad U_{6}^{5} \quad U_{6}^{6} \quad U_{6}^{7} \quad$$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Theorem (Hurewicz-Recław)

X is Hurewicz \Leftrightarrow every continuous image of X in ω^{ω} is bounded.

$$U_{n}^{m} = \{x \in X : f(x)(n) = m\}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{2}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{2}^{2} \quad U_{0}^{3} \quad U_{1}^{4} \quad U_{2}^{5} \quad U_{0}^{6} \quad U_{1}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{1}^{2} \quad U_{1}^{3} \quad U_{1}^{4} \quad U_{1}^{5} \quad U_{0}^{6} \quad U_{1}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{1}^{2} \quad U_{1}^{3} \quad U_{1}^{4} \quad U_{1}^{5} \quad U_{0}^{6} \quad U_{1}^{7}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{2}^{2} \quad U_{3}^{3} \quad U_{4}^{4} \quad U_{5}^{5} \quad U_{0}^{6} \quad U_{7}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{2}^{2} \quad U_{3}^{3} \quad U_{4}^{4} \quad U_{5}^{5} \quad U_{0}^{6} \quad U_{7}^{7}$$

$$U_{0}^{1} \quad U_{1}^{1} \quad U_{2}^{2} \quad U_{3}^{3} \quad U_{4}^{4} \quad U_{5}^{5} \quad U_{0}^{6} \quad U_{7}^{7}$$

$$U_{0}^{1} \quad U_{1}^{1} \quad U_{2}^{2} \quad U_{3}^{3} \quad U_{4}^{4} \quad U_{5}^{5} \quad U_{0}^{6} \quad U_{7}^{7}$$

 $x \mapsto f_x <^* g$

Hurewicz: $\forall \mathcal{U}_0, \mathcal{U}_1, \ldots \in \mathcal{O} \exists \text{ finite } \mathcal{F}_0 \subseteq \mathcal{U}_0, \mathcal{F}_1 \subseteq \mathcal{U}_1, \ldots \{\bigcup \mathcal{F}_n : n \in \omega\} \in \Gamma$

Theorem (Hurewicz-Recław)

X is Hurewicz \Leftrightarrow every continuous image of X in ω^{ω} is bounded.

$$U_{n}^{m} = \{x \in X : f(x)(n) = m\}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{1}^{1} \quad U_{1}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0}^{0} \quad U_{0}^{1} \quad U_{0}^{2} \quad U_{0}^{2} \quad U_{0}^{3} \quad U_{0}^{4} \quad U_{0}^{5} \quad U_{0}^{6} \quad U_{0}^{7}$$

$$U_{0} \quad U_{1} \quad U_{2} \quad U_{3} \quad U_{4} \quad U_{5} \quad U_{6} \quad U_{7}$$

Theorem (Hurewicz-Recław)

• X is Menger \Leftrightarrow no continuous image of X in ω^{ω} is dominaiting.

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a \mathfrak{d} -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a $\mathfrak d$ -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

Theorem

Assume $\mathfrak{b} = \mathfrak{d}$. Let $X \subseteq [\omega]^{\omega}$ be an unbounded set. Then it has a \mathfrak{d} -unbounded subset.

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a \mathfrak{d} -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

Theorem

Assume $\mathfrak{b} = \mathfrak{d}$. Let $X \subseteq [\omega]^{\omega}$ be an unbounded set. Then it has a \mathfrak{d} -unbounded subset.

U: free ultrafilter

$$f \leq_U g \Leftrightarrow \{n : f(n) \leq g(n)\} \in U$$

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a \mathfrak{d} -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

Theorem

Assume $\mathfrak{b} = \mathfrak{d}$. Let $X \subseteq [\omega]^{\omega}$ be an unbounded set. Then it has a \mathfrak{d} -unbounded subset.

U: free ultrafilter

$$f \leq_U g \Leftrightarrow \{n : f(n) \leq g(n)\} \in U$$

 $\mathfrak{b}(U)$: the minimal size of a \leq_U -unbounded set

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a \mathfrak{d} -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

Theorem

Assume $\mathfrak{b} = \mathfrak{d}$. Let $X \subseteq [\omega]^{\omega}$ be an unbounded set. Then it has a \mathfrak{d} -unbounded subset.

U : free ultrafilter

$$f <_{U} g \Leftrightarrow \{n : f(n) < g(n)\} \in U$$

 $\mathfrak{b}(U)$: the minimal size of a \leq_{U} -unbounded set

 $\text{dominaiting scale } S = \{f_\alpha : \alpha < \mathfrak{d}\} \in \omega^\omega \quad \alpha < \beta \Rightarrow f_\alpha \leq^* f_\beta \quad S \text{ is dominaiting }$

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a \mathfrak{d} -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

Theorem

Assume $\mathfrak{b} = \mathfrak{d}$. Let $X \subseteq [\omega]^{\omega}$ be an unbounded set. Then it has a \mathfrak{d} -unbounded subset.

U : free ultrafilter

$$f <_{U} g \Leftrightarrow \{n : f(n) < g(n)\} \in U$$

 $\mathfrak{b}(U)$: the minimal size of a \leq_{U} -unbounded set

dominaiting scale $S = \{f_{\alpha} : \alpha < \mathfrak{d}\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq^* f_{\beta} \quad S \text{ is dominaiting } b(U)\text{-scale } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \text{ is } \leq_U\text{-unbounded } S = \{f_{\alpha} : \alpha \in \mathcal{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \in \mathcal{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \in \mathcal{b}(U) \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \in \mathcal{b}(U) \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \in \mathcal{b}(U) \in \omega^{\omega} \quad \alpha < \beta \Rightarrow_U f_{\beta} \quad S \in \mathcal{b}(U) \in \omega^{\omega} \quad S \in \mathcal{b}(U) \cap \mathcal{b}(U) = \mathcal{b}(U) = \mathcal{b}(U) \cap \mathcal{b}(U) = \mathcal{b}(U) \cap \mathcal{b}(U) = \mathcal{b}(U) = \mathcal{b}(U) = \mathcal{b}(U) \cap \mathcal{b}(U) = \mathcal{b$

 \mathfrak{d} -unbounded set: X such that $|X| \geq \mathfrak{d}$ and $Y \subseteq X$ bounded $\Rightarrow |Y| < \mathfrak{d}$

Theorem

Let $X \subseteq [\omega]^{\omega}$ be a \mathfrak{d} -unbounded set. Then $X \cup \mathrm{Fin}$ is Menger.

Theorem

Assume $\mathfrak{b} = \mathfrak{d}$. Let $X \subseteq [\omega]^{\omega}$ be an unbounded set. Then it has a \mathfrak{d} -unbounded subset.

U: free ultrafilter

$$f \leq_U g \Leftrightarrow \{n : f(n) \leq g(n)\} \in U$$

 $\mathfrak{b}(U)$: the minimal size of a \leq_{U} -unbounded set

dominaiting scale $S = \{f_{\alpha} : \alpha < \mathfrak{d}\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq^* f_{\beta} \quad S$ is dominaiting $\mathfrak{b}(U)$ -scale $S = \{f_{\alpha} : \alpha < \mathfrak{b}(U)\} \in \omega^{\omega} \quad \alpha < \beta \Rightarrow f_{\alpha} \leq_U f_{\beta} \quad S$ is \leq_U -unbounded productively Hurewicz: X such that for every Hurewicz set H product $X \times H$ is Hurewicz

 $\sigma\text{-compact}\Rightarrow\mathsf{Hurewicz}\Rightarrow\mathsf{Scheepers}\Rightarrow\mathsf{Menger}$

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$ and X contain a \mathfrak{d} -unbounded set. Then there is a \mathfrak{d} -unbounded set Y such that $X \times (Y \cup Fin)$ is not Menger.

 σ -compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$ and X contain a \mathfrak{d} -unbounded set. Then there is a \mathfrak{d} -unbounded set Y such that $X \times (Y \cup \operatorname{Fin})$ is not Menger.

Theorem (Canjar)

 $cf(\mathfrak{d}) = \mathfrak{d} \Rightarrow There is an ultrafilter U such that \mathfrak{b}(U) = \mathfrak{d}.$

 σ -compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$ and X contain a \mathfrak{d} -unbounded set. Then there is a \mathfrak{d} -unbounded set Y such that $X \times (Y \cup \mathrm{Fin})$ is not Menger.

Theorem (Canjar)

 $cf(\mathfrak{d}) = \mathfrak{d} \Rightarrow There is an ultrafilter U such that \mathfrak{b}(U) = \mathfrak{d}$.

Theorem (Szewczak-KD-Zdomskyy)

Let cf $\mathfrak{d} = \mathfrak{d}$ and X contain a \mathfrak{d} -unbounded set. Then there are an ultrafilter U and a $\mathfrak{b}(U)$ -scale Y such that $X \times (Y \cup \operatorname{Fin})$ is not Menger.

 σ -compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$ and X contain a \mathfrak{d} -unbounded set. Then there is a \mathfrak{d} -unbounded set Y such that $X \times (Y \cup \operatorname{Fin})$ is not Menger.

Theorem (Canjar)

 $cf(\mathfrak{d}) = \mathfrak{d} \Rightarrow There is an ultrafilter U such that \mathfrak{b}(U) = \mathfrak{d}$.

Theorem (Szewczak-KD-Zdomskyy)

Let cf $\mathfrak{d} = \mathfrak{d}$ and X contain a \mathfrak{d} -unbounded set. Then there are an ultrafilter U and a $\mathfrak{b}(U)$ -scale Y such that $X \times (Y \cup \operatorname{Fin})$ is not Menger.

Theorem (Szewczak-Tsaban)

Let U be an ultrafilter, X is Hurewicz and Y is a $\mathfrak{b}(U)$ -scale. Then $X \times (Y \cup \operatorname{Fin})$ is Scheepers.

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}$. Then every productively Scheepers space is productively Hurewicz.

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}.$ Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}.$ Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Assume X is productively Scheepers, H is Hurewicz and $X \times H$ isn't Hurewicz.

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}.$ Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Assume X is productively Scheepers, H is Hurewicz and $X \times H$ isn't Hurewicz.

 $Z \subset [\omega]^{\omega}$ – unbounded continuous image of $X \times H$

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}$. Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Assume X is productively Scheepers, H is Hurewicz and $X \times H$ isn't Hurewicz.

$$Z \subset [\omega]^{\omega}$$
 – unbounded continuous image of $X \times H$

 $Y - \mathfrak{b}(U)$ -scale such that $Z \times (Y \cup \operatorname{Fin})$ is not Menger

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}$. Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Assume X is productively Scheepers, H is Hurewicz and $X \times H$ isn't Hurewicz.

$$Z \subset [\omega]^{\omega}$$
 – unbounded continuous image of $X \times H$

 $Y - \mathfrak{b}(U)$ -scale such that $Z \times (Y \cup \operatorname{Fin})$ is not Menger

$$X \times H \times (Y \cup \operatorname{Fin}) \xrightarrow{\mathsf{continuous}} Z \times (Y \cup \operatorname{Fin}) \Rightarrow X \times H \times (Y \cup \operatorname{Fin})$$
 is not Menger

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}$. Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Assume X is productively Scheepers, H is Hurewicz and $X \times H$ isn't Hurewicz.

$$Z \subset [\omega]^{\omega}$$
 – unbounded continuous image of $X \times H$

 $Y - \mathfrak{b}(U)$ -scale such that $Z \times (Y \cup \operatorname{Fin})$ is not Menger

$$X \times H \times (Y \cup \operatorname{Fin}) \xrightarrow{\mathsf{continuous}} Z \times (Y \cup \operatorname{Fin}) \Rightarrow X \times H \times (Y \cup \operatorname{Fin})$$
 is not Menger

$$H \times (Y \cup Fin)$$
 is Scheepers $\Rightarrow X \times H \times (Y \cup Fin)$ is Scheepers

Theorem (Szewczak-Tsaban)

Let $cf(\mathfrak{d}) = \mathfrak{d}$. Then every productively Menger space is productively Hurewicz.

Theorem (Szewczak-KD-Zdomskyy)

Let $\mathfrak{b}=\mathfrak{d}$. Then every productively Scheepers space is productively Hurewicz.

Sketch of the proof:

Assume X is productively Scheepers, H is Hurewicz and $X \times H$ isn't Hurewicz.

$$Z \subset [\omega]^{\omega}$$
 – unbounded continuous image of $X \times H$

 $Y - \mathfrak{b}(U)$ -scale such that $Z \times (Y \cup \operatorname{Fin})$ is not Menger

$$X \times H \times (Y \cup \operatorname{Fin}) \xrightarrow{\mathsf{continuous}} Z \times (Y \cup \operatorname{Fin}) \Rightarrow X \times H \times (Y \cup \operatorname{Fin})$$
 is not Menger

$$H \times (Y \cup Fin)$$
 is Scheepers $\Rightarrow X \times H \times (Y \cup Fin)$ is Scheepers

Scheepers implies Menger – contradiction \square