Ideals on ω and Nikodym vs Grothendieck property of Boolean algebras

Tomasz Żuchowski

Mathematical Institute, University of Wrocław

Winter School in Abstract Analysis, section Set Theory & Topology Hejnice, 28.01.2025

joint work with Damian Sobota

Tomasz Żuchowski Ideals on ω and Nikodym vs Grothendieck property of Boolean a

イロト イヨト イヨト

SQA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

 $\|\mu\| = \sup \left\{ |\mu(A)| + |\mu(B)| : A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}} \right\} < \infty.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

$$\|\mu\| = \sup\left\{|\mu(A)| + |\mu(B)|: A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}}\right\} < \infty.$$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- *pointwise null* if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

 $\|\mu\| = \sup \left\{ |\mu(A)| + |\mu(B)| : A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}} \right\} < \infty.$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- *pointwise null* if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Nikodym property of Boolean algebra

A Boolean algebra A has the *Nikodym property* if every pointwise null sequence of measures on A is uniformly bounded.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

• *σ*-complete algebras (Nikodym '30, Andô '61),

(4月) キョン キョン

nar

- *σ*-complete algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),

(4月) (日) (日)

MQ (P

- σ-complete algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

MQ (P

- σ-complete algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

However, if the Stone space St(A) of ultrafilters on A contains a non-trivial convergent sequence, then A does not have the Nikodym property:

イロト イヨト イヨト

DQ P

- *σ*-complete algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

However, if the Stone space St(A) of ultrafilters on A contains a non-trivial convergent sequence, then A does not have the Nikodym property:

if $x_n \to x$, then consider the sequence of measures $\mu_n = n(\delta_{x_n} - \delta_x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

N_F spaces

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

イロト イヨト イヨト

nar

N_F spaces

N_F spaces

- ${\it F}$ a free filter on ω
- $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:
 - every point of ω is isolated in N_F ,
 - U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

Trivial example

 N_{Fr} is homeomorphic to a convergent sequence (together with its limit), where by Fr we denote the Fréchet filter on ω .

< 同 > < 国 > < 国 >

N_F spaces

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

Trivial example

 N_{Fr} is homeomorphic to a convergent sequence (together with its limit), where by Fr we denote the Fréchet filter on ω .

Question

For which filters F on ω , if N_F homeomorphically embeds into the Stone space St(A) of a Boolean algera A, then A does not have the Nikodym property?

イロト イボト イヨト イヨト

SQA

1

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

Class \mathcal{AN} of ideals

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$. In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \ldots, x_n\}$.

イロン 不得 とくほ とくほ とうほう

SQC

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$. In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \ldots, x_n\}$.

Class \mathcal{AN}

 \mathcal{I} - ideal on ω $\mathcal{I} \in \mathcal{AN}$ if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on $N_{\mathcal{I}^*}$ such that

・ 同 ト ・ ヨ ト ・ ヨ ト

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$. In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \ldots, x_n\}$.

Class \mathcal{AN}

 $\begin{array}{l} \mathcal{I} \ \text{- ideal on } \omega \\ \mathcal{I} \in \mathcal{AN} \ \text{if there is no sequence of finitely supported measures} \\ \langle \mu_n : n \in \omega \rangle \ \text{on } N_{\mathcal{I}^*} \ \text{such that} \end{array}$

•
$$\|\mu_n\| \to \infty$$
,

・ 同 ト ・ ヨ ト ・ ヨ ト

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$. In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \ldots, x_n\}$.

Class \mathcal{AN}

 ${\mathcal I}$ - ideal on ω

 $\mathcal{I} \in \mathcal{AN}$ if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on $N_{\mathcal{I}^*}$ such that

- $\|\mu_n\| \to \infty$,
- $\mu_n(A) \to 0$ for every $A \in \text{Clopen}(N_{\mathcal{I}^*})$.

イロト 不得 トイヨト イヨト 二日

SQR

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$. In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \ldots, x_n\}$.

Class \mathcal{AN}

 \mathcal{I} - ideal on ω $\mathcal{I} \in \mathcal{AN}$ if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on $N_{\mathcal{I}^*}$ such that

- $\|\mu_n\| \to \infty$,
- $\mu_n(A) \to 0$ for every $A \in \text{Clopen}(N_{\mathcal{I}^*})$.

Theorem (Z.)

If $\mathcal{I} \in \mathcal{AN}$ and $N_{\mathcal{I}^*}$ homeomorphically embeds into $St(\mathcal{A})$, then \mathcal{A} does not have the Nikodym property.

イロト イヨト イヨト

-

 $\varphi: \mathcal{P}(\omega) \rightarrow [0, \infty]$ is an *lsc submeasure* if

• $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,

•
$$\varphi(X) \leq \varphi(Y)$$
 whenever $X \subseteq Y$,

- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$,
- (Isc) $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$

イロン 不得 とくほ とくほ とうほう

SQC

 $\varphi : \mathcal{P}(\omega) \to [0,\infty]$ is an *lsc submeasure* if

• $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,

•
$$\varphi(X) \leq \varphi(Y)$$
 whenever $X \subseteq Y$,

- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$,
- (Isc) $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$

Ideals associated with an lsc submeasure arphi on ω

$$\begin{split} & \mathsf{Exh}(\varphi) = \left\{ \mathsf{A} \subseteq \omega \colon \lim_{n \to \infty} \varphi(\mathsf{A} \setminus [0, n]) = 0 \right\} - \mathsf{an} \ \mathsf{F}_{\sigma \delta} \ \mathsf{P}\text{-}\mathsf{ideal} \\ & \mathsf{Fin}(\varphi) = \left\{ \mathsf{A} \subseteq \omega \colon \varphi(\mathsf{A}) < \infty \right\} - \mathsf{an} \ \mathsf{F}_{\sigma} \ \mathsf{ideal} \end{split}$$

- 4 同 ト 4 回 ト - - 回

DQ P

 $\varphi : \mathcal{P}(\omega) \rightarrow [0,\infty]$ is an *lsc submeasure* if

• $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,

•
$$\varphi(X) \leq \varphi(Y)$$
 whenever $X \subseteq Y$,

- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$,
- (Isc) $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$

Ideals associated with an lsc submeasure arphi on ω

$$Exh(\varphi) = \{A \subseteq \omega: \lim_{n \to \infty} \varphi(A \setminus [0, n]) = 0\} - \text{an } F_{\sigma\delta} \text{ P-ideal}$$
$$Fin(\varphi) = \{A \subseteq \omega: \varphi(A) < \infty\} - \text{an } F_{\sigma} \text{ ideal}$$

Summable ideals

For every
$$f: \omega \to \mathbb{R}_+$$
 such that $\sum_{n \in \omega} f(n) = \infty$, let
 $\mathcal{I}_f = \left\{ A \subseteq \omega: \sum_{n \in A} f(n) < \infty \right\}$

naa

 $\varphi : \mathcal{P}(\omega) \rightarrow [0,\infty]$ is an *lsc submeasure* if

• $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,

•
$$\varphi(X) \leq \varphi(Y)$$
 whenever $X \subseteq Y$,

- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$,
- (Isc) $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$

Ideals associated with an lsc submeasure arphi on ω

$$\begin{aligned} & \mathsf{Exh}(\varphi) = \left\{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus [0, n]) = 0 \right\} - \text{an } F_{\sigma\delta} \text{ P-ideal} \\ & \mathsf{Fin}(\varphi) = \left\{ A \subseteq \omega : \varphi(A) < \infty \right\} - \text{an } F_{\sigma} \text{ ideal} \end{aligned}$$

Summable ideals

For every
$$f: \omega \to \mathbb{R}_+$$
 such that $\sum_{n \in \omega} f(n) = \infty$, let
 $\mathcal{I}_f = \left\{ A \subseteq \omega: \sum_{n \in A} f(n) < \infty \right\} = Exh(\mu_f) = Fin(\mu_f),$
where $\mu_f(A) = \sum_{n \in A} f(n)$ – a non-negative measure on ω .

Ideals on ω and Nikodym vs Grothendieck property of Boolean a

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

イロト 不得 トイヨト イヨト 二日

590

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

An lsc submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}.$

 \mathcal{I} is a non-pathological ideal if $\mathcal{I} = Exh(\varphi)$ for some non-pathological submeasure.

・ 同 ト ・ ヨ ト ・ ヨ ト

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

An lsc submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}.$

 \mathcal{I} is a non-pathological ideal if $\mathcal{I} = Exh(\varphi)$ for some non-pathological submeasure.

Density submeasure

A submeasure φ is a *density submeasure* if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that $\varphi = \sup_{n \in \omega} \mu_n$.

< 同 ▶ < ∃ ▶ < ∃ ▶

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

An lsc submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}.$

 \mathcal{I} is a non-pathological ideal if $\mathcal{I} = Exh(\varphi)$ for some non-pathological submeasure.

Density submeasure

A submeasure φ is a *density submeasure* if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that $\varphi = \sup_{n \in \omega} \mu_n$.

The canonical example is an *asymptotic density* on ω defined by:

$$\varphi_d(A) = \sup_{n \in \omega} \left| A \cap [2^n, 2^{n+1}) \right| / 2^n.$$

< ロ > < 同 > < 回 > < 回 >

Theorem (Ż.)

Let \mathcal{I} be an ideal on ω . Then, the following are equivalent:

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

MQ (P

Theorem (Ż.)

Let \mathcal{I} be an ideal on ω . Then, the following are equivalent:

• $\mathcal{I} \in \mathcal{AN}$;

Tomasz Żuchowski Ideals on ω and Nikodym vs Grothendieck property of Boolean a

(4 同 ト 4 ヨ ト 4 ヨ ト

nar

Theorem (Ż.)

Let \mathcal{I} be an ideal on ω . Then, the following are equivalent:

- $\mathcal{I} \in \mathcal{AN}$;
- there is a density submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq \mathsf{Exh}(\varphi)$;

• (10) + (10)

MQ (P

Theorem (Ż.)

Let \mathcal{I} be an ideal on ω . Then, the following are equivalent:

- $\mathcal{I} \in \mathcal{AN}$;
- there is a density submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq \mathsf{Exh}(\varphi)$;
- there is a non-pathological lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq Exh(\varphi)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem (Ż.)

Let \mathcal{I} be an ideal on ω . Then, the following are equivalent:

- $\mathcal{I} \in \mathcal{AN}$;
- there is a density submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq \mathsf{Exh}(\varphi)$;
- there is a non-pathological lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq Exh(\varphi)$.

Theorem (folklore)

For every density submeasure φ on ω such that $\varphi(\omega) = \infty$ there is a summable ideal containing $\text{Exh}(\varphi)$.

イロト イボト イヨト イヨト

Theorem (Ż.)

Let \mathcal{I} be an ideal on ω . Then, the following are equivalent:

- $\mathcal{I} \in \mathcal{AN}$;
- there is a density submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq \mathsf{Exh}(\varphi)$;
- there is a non-pathological lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ and $\mathcal{I} \subseteq Exh(\varphi)$.

Theorem (folklore)

For every density submeasure φ on ω such that $\varphi(\omega) = \infty$ there is a summable ideal containing $\text{Exh}(\varphi)$.

Corollary

 $\mathcal{I} \in \mathcal{AN}$ if and only if \mathcal{I} is contained in a summable ideal.

Tomasz Żuchowski Ideals on ω and Nikodym vs Grothendieck property of Boolean a

ヘロト 人間ト 人間ト 人間ト

nar

Definition (Hernández-Hernández, Hrušák)

An analytic P-ideal \mathcal{I} on ω is *totally bounded* if whenever φ is an lsc submeasure on ω for which $\mathcal{I} = Exh(\varphi)$, then $\varphi(\omega) < \infty$

< 回 > < 回 > < 回 >

MQ (P

Definition (Hernández-Hernández, Hrušák)

An analytic P-ideal \mathcal{I} on ω is *totally bounded* if whenever φ is an lsc submeasure on ω for which $\mathcal{I} = Exh(\varphi)$, then $\varphi(\omega) < \infty$

Lemma (Sobota, Z.)

For every lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ there exists an lsc submeasure ψ on ω satisfying $\psi(\omega) = \infty$ and $Fin(\varphi) \subseteq Exh(\psi)$.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Definition (Hernández-Hernández, Hrušák)

An analytic P-ideal \mathcal{I} on ω is *totally bounded* if whenever φ is an lsc submeasure on ω for which $\mathcal{I} = Exh(\varphi)$, then $\varphi(\omega) < \infty$

Lemma (Sobota, Z.)

For every lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ there exists an lsc submeasure ψ on ω satisfying $\psi(\omega) = \infty$ and $Fin(\varphi) \subseteq Exh(\psi)$.

Theorem (Sobota, Ż.)

An analytic P-ideal \mathcal{I} on ω is totally bounded if and only if \mathcal{I} is not contained in an F_{σ} ideal.

イロト イボト イヨト イヨト

Totally bounded ideals and the Nikodym property

Theorem (Ż.)

For a density submeasure φ and an ideal $\mathcal{I} = \text{Exh}(\varphi)$ on ω we have $\mathcal{I} \in \mathcal{AN}$ if and only if \mathcal{I} is not totally bounded.

< 同 > < 国 > < 国 >

MQ (P

Totally bounded ideals and the Nikodym property

Theorem (Ż.)

For a density submeasure φ and an ideal $\mathcal{I} = \text{Exh}(\varphi)$ on ω we have $\mathcal{I} \in \mathcal{AN}$ if and only if \mathcal{I} is not totally bounded.

Definition

An ideal \mathcal{I} on ω is a hypergraph ideal if, for some $\langle G_n: n \in \omega \rangle$ – finite non-empty disjoint subsets of ω and $H_n \subseteq [G_n]^{<\omega}$, we have

$$\mathcal{I} = \left\{ A \subseteq \omega : \lim_{n \to \infty} \sup_{e \in H_n} \frac{|A \cap e|}{|e|} = 0 \right\}$$

• (1) • (1) • (1)

Totally bounded ideals and the Nikodym property

Theorem (Ż.)

For a density submeasure φ and an ideal $\mathcal{I} = \text{Exh}(\varphi)$ on ω we have $\mathcal{I} \in \mathcal{AN}$ if and only if \mathcal{I} is not totally bounded.

Definition

An ideal \mathcal{I} on ω is a hypergraph ideal if, for some $\langle G_n: n \in \omega \rangle$ – finite non-empty disjoint subsets of ω and $H_n \subseteq [G_n]^{<\omega}$, we have

$$\mathcal{I} = \left\{ A \subseteq \omega : \lim_{n \to \infty} \sup_{e \in H_n} \frac{|A \cap e|}{|e|} = 0 \right\}.$$

Theorem (Sobota, Ž.)

There is a family $\{\mathcal{I}_{\alpha}: \alpha < \mathfrak{c}\}$ of pairwise non-isomorphic hypergraph ideals (in particular: non-pathological ideals) which are outside the class \mathcal{AN} and are not totally bounded.

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) is a Grothendieck space.

(4回) (日) (日)

MQ (P

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) is a Grothendieck space.

Not easy to distinguish with the Nikodym property!

MQ (P

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) is a Grothendieck space.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

• (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)

< ロ > < 同 > < 回 > < 回 >

nar

=

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) is a Grothendieck space.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

- (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)
- (Talagrand, 1984) example under CH of the algebra with (G) but without (N)

< ロ > < 同 > < 回 > < 回 >

nar

=

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) is a Grothendieck space.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

- (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)
- (Talagrand, 1984) example under CH of the algebra with (G) but without (N)
- (Sobota & Zdomskyy, 2023) example under MA of the algebra with (G) but without (N)
- (Głodkowski & Widz, 2024) forcing construction of the algebra with (G) but without (N)

イロト イヨト イヨト

3

SQR

Theorem (Marciszewski, Sobota)

Let F be a filter on ω and A a Boolean algebra. Then,

• N_F has the BJN property

→ 同 ▶ → 臣 ▶ → 臣 ▶

MQ (P

Theorem (Marciszewski, Sobota)

Let F be a filter on ω and A a Boolean algebra. Then,

 N_F has the BJN property if and only if there is a non-pathological submeasure φ on ω such that F ⊆ Exh(φ)*;

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Marciszewski, Sobota)

Let F be a filter on ω and A a Boolean algebra. Then,

- N_F has the BJN property if and only if there is a non-pathological submeasure φ on ω such that F ⊆ Exh(φ)*;
- if N_F has the BJN property and embeds into St(A), then A does not have the Grothendieck property.

- 4 同 1 4 三 1 4 三 1

 $\mathcal{A}_{F} = \left\{ A \subseteq \omega \colon A \in F \lor A^{\mathsf{c}} \in F \right\}$

Tomasz Żuchowski Ideals on ω and Nikodym vs Grothendieck property of Boolean a

(日) (四) (三) (三)

SQR

ŀ

$$\mathcal{A}_{\mathcal{F}} = \left\{ A \subseteq \omega \colon A \in \mathcal{F} \lor A^{\mathsf{c}} \in \mathcal{F} \right\}$$

Theorem (Sobota, Ż.)

If \mathcal{A}_F does not have the Nikodym property, then it neither has the Grothendieck property.

伺下 イヨト イヨト

 $\mathcal{A}_{\mathcal{F}} = \left\{ A \subseteq \omega \colon A \in \mathcal{F} \lor A^{\mathsf{c}} \in \mathcal{F} \right\}$

Theorem (Sobota, Ż.)

If A_F does not have the Nikodym property, then it neither has the Grothendieck property.

Theorem (Sobota, Ž.)

The following are equivalent:

● *A_F* has the Nikodym property;

• (1) • (1) • (1)

 $\mathcal{A}_{\mathcal{F}} = \left\{ A \subseteq \omega \colon A \in \mathcal{F} \lor A^{\mathsf{c}} \in \mathcal{F} \right\}$

Theorem (Sobota, Ż.)

If \mathcal{A}_F does not have the Nikodym property, then it neither has the Grothendieck property.

Theorem (Sobota, Z.)

The following are equivalent:

1 \mathcal{A}_F has the Nikodym property;

2 \mathcal{A}_F/Fin has the Nikodym property and $F^* \notin \mathcal{AN}$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Theorem (Sobota, Ż.)

For every non-pathological ideal \mathcal{I} such that $\mathcal{I} \notin \mathcal{AN}$, the algebra $\mathcal{A}_{\mathcal{I}^*}$ has the Nikodym property and does not have the Grothendieck property.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Sobota, Ž.)

For every non-pathological ideal \mathcal{I} such that $\mathcal{I} \notin AN$, the algebra $\mathcal{A}_{\mathcal{I}^*}$ has the Nikodym property and does not have the Grothendieck property.

Corollary (Sobota, Z.)

There are \mathfrak{c} non-isomorphic Boolean algebras with (N) and without (G), of the form \mathcal{A}_F where F is a Borel filter on ω .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Sobota, Ż.)

For every non-pathological ideal \mathcal{I} such that $\mathcal{I} \notin AN$, the algebra $\mathcal{A}_{\mathcal{I}^*}$ has the Nikodym property and does not have the Grothendieck property.

Corollary (Sobota, Z.)

There are \mathfrak{c} non-isomorphic Boolean algebras with (N) and without (G), of the form \mathcal{A}_F where F is a Borel filter on ω .

Theorem (Sobota, Z.)

For every non-principal ultrafilter \mathcal{U} on ω , the algebra $\mathcal{A}_{\mathcal{U}\oplus\mathcal{Z}^*}$ has the Nikodym property and does not have the Grothendieck property, and so there are 2^c such non-isomorphic algebras.

イロト イボト イヨト イヨト

Thank You for Your attention :)

・ロト ・回ト ・ヨト ・ヨト

1

590

Thank You for Your attention :) But...

・ロト ・部 ト ・ ヨト ・ ヨト

E

590

THE ROAMING LOGIC CONFERENCE 9th May - 11th May 2025 in Warsaw, Poland https://sites.google.com/uw.edu.pl/ the-roaming-logic-conference

(4回) (日) (日)

nar