Local reflections of choice

Calliope Ryan-Smith

Univeristy of Leeds

31st January 2025

Winter School in Abstract Analysis 2025

No \pause version of slides

Based on arXiv:2412.13785

c.Ryan-Smith@leeds.ac.uk

calliope.mx

 $f \emptyset \notin X$ then X has a *choice function*: $f : X \to \bigcup X$ such that $f(x) \in x$ for all $x \in X$. This has many desirable consequences that we can take as weakenings of AC:

- 1. AC_A(B): If $X = \{x_a \mid a \in A\} \subseteq \mathscr{P}(B)$ and $\emptyset \notin X$ then X has a choice function.
- 2. AC_A: If |X| = |A| and $\emptyset \notin X$ then X has a choice function.
- 3. The *principle of dependent choices* DC: If *T* is a tree of infinite height then *T* has a maximal node or a branch.
- 4. The *partition principle* PP: If there is a surjection $Y \to X$ then there is an injection $X \to Y$.

 $|X| \leq |Y|$ means there is an injection $X \to Y$. $|X| \leq |Y|$ means there is a surjection $Y \to X$, or $X = \emptyset$.

э

Question (scheme)

Let φ be a theorem of ZFC. Is φ a theorem of ZF?

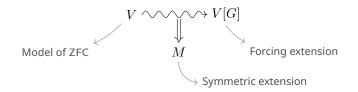
Example

In *Cohen's first model* (Cohen, 60s) there is an infinite set A of real numbers such that $|\omega| \leq |A|$ but $|\omega| \leq |A|$. Therefore, none of AC_{ω}, DC, or PP are theorems of ZF.

Cohen used (an early version of) *symmetric extensions*, which are still very powerful for independence proofs.

Symmetric extensions

Approximately



In the case of Cohen's first model, we add a set A of ω -many Cohen reals but 'forget' the enumeration so, in M, A is *Dedekind-finite*.

Symmetric extensions

Exactly

A \mathbb{P} -name is a set \dot{x} such that every $a \in \dot{x}$ is of the form $\langle p, \dot{y} \rangle$, where $p \in \mathbb{P}$ and \dot{y} is a \mathbb{P} -name.

For $\pi \in Aut(\mathbb{P})$, define

$$\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$$

A **normal filter of subgroups** of \mathscr{G} is a set \mathscr{F} of subgroups of \mathscr{G} such that:

- If $H \in \mathscr{F}$ and $H \leq H' \leq \mathscr{G}$ then $H' \in \mathscr{F}$;
- if $H, H' \in \mathscr{F}$ then $H \cap H' \in \mathscr{F}$; and
- if $\pi \in \mathscr{G}$ and $H \in \mathscr{F}$ then $\pi H \pi^{-1} \in \mathscr{F}$.

A **symmetric system** is a triple $\mathscr{S} = \langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ where $\mathscr{G} \leq \operatorname{Aut}(\mathbb{P})$ and \mathscr{F} is a normal filter of subgroups of \mathscr{G} .

A **symmetric system** is a triple $\mathscr{S} = \langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ where $\mathscr{G} \leq \operatorname{Aut}(\mathbb{P})$ and \mathscr{F} is a normal filter of subgroups of \mathscr{G} .

An \mathscr{S} -name is a \mathbb{P} -name such that $\{\pi \in \mathscr{G} \mid \pi \dot{x} = \dot{x}\} \in \mathscr{F}$, and this holds hereditarily for all names appearing in \dot{x} .

For a V-generic filter $G \subseteq \mathbb{P}$, we build the **symmetric extension**

$$V[G]_{\mathscr{S}} = \{ \dot{x}^G \mid \dot{x} \text{ is an } \mathscr{S}\text{-name} \}.$$

Fact

 $V[G]_{\mathscr{S}} \subseteq V[G]$ is a transitive model of ZF.

< □ > < 同 > < 回 > < 回 > .

Destroying a choice principle is generally easier than proving that it has not been destroyed.

- If we want to violate AC_ω then we 'just' have to add a countable set A with no choice function.
- If we want to check that AC_ω holds in a model then we have to 'check' every countable set to see if it has a choice function.

Example

In Cohen's first model, every set can be linearly ordered, but building a bespoke linear order for every set is hard. Instead, we use its status as a symmetric extension.

Theorem (Blass/Usuba, [Bla79; Usu21])

Let SVC(*S*) be the statement "for all *X* there is $\eta \in \text{Ord}$ such that $|X| \leq * |S \times \eta|$ ". *M* is a symmetric extension* if and only if it is a model of SVC $\equiv (\exists S)$ SVC(*S*).

If $M \models SVC(S)$ and a choice principle fails, the failure is usually 'because of S'. That is, the failure has a *local reflection*.

Example

- ▶ If AC_{ω} fails then there is a countable set $X \subseteq \mathscr{P}(S)$ with no choice function.
- If DC fails then there is a subtree of $S^{<\omega}$ with no maximal nodes or cofinal branches.

Local reflections of choice

SVC(S) means "for all X there is $\eta \in Ord$ such that $|X| \leq |S \times \eta|$ ".

Proposition (R.S.)

Assume SVC(S). For all sets X, the following are equivalent:

- 1. AC_X ; and
- **2.** $AC_X(S)$.

Proof.

Consider $A = \{A_y \mid y \in X\} \not\ni \emptyset$, and let $f : S \times \eta \to \bigcup A$ be a surjection. Let $S_y = \{t \in S \mid (\exists \beta < \eta) f(t, \beta) \in A_y\}$. By $AC_X(S)$, $\{S_y \mid y \in X\}$ has a choice function $c \colon X \to S$. Let $d(y) = f(c(y), \beta_y)$, where β_y is least such that $f(c(y), \beta_y) \in A_y$.

Local reflections of choice

Proposition (R.S.)

Assume SVC(S). AC_{ω} is equivalent to $AC_{\omega}(S)$.

Corollary

Assume SVC(S). If S is infinite then $|\omega| \leq |S|$.

Proof.

If $|\omega| \leq * |S|$, then if $A = \{A_n \mid n < \omega\} \subseteq \mathscr{P}(S)$, for $t \in \bigcup A$ let $g(t) = \min\{n < \omega \mid t \in A_n\}$. Then $F = g^* \bigcup A$ is finite, so there is a choice function $c \colon F \to S$. So $d(n) = c(\min g^*A_n)$ is a choice function for A. Therefore, $AC_{\omega}(S)$ holds, and so AC_{ω} holds. However, AC_{ω} implies that if X is infinite then $|\omega| \leq |X|$.

A D > A A + A

Cohen's first model is a model of SVC($[A]^{<\omega}$), where $A \subseteq \mathbb{R}$ is such that $|\omega| \notin |A|$. Since AC_{ω} fails, this is witnessed 'close to' $[A]^{<\omega}$. In fact, $\{[A]^n \mid n < \omega\}$ has no choice function.

If $c: \omega \to [A]^{<\omega}$ is a choice function then, since $A \subseteq \mathbb{R}$, there is a definable well-order on each c(n), so we can well-order $c^{"}\omega$ lexicographically and obtain an injection $\omega \to A$.

(This frame added post-conference)

Definition

 $SVC^+(S)$ is *injective* SVC: For all X there is $\eta \in Ord$ such that $|X| \leq |S \times \eta|$.

Note that $\mathsf{SVC}^+(S) \implies \mathsf{SVC}(S) \implies \mathsf{SVC}^+(\mathscr{P}(S)).$

Image: A matrix and a matrix

э

Assume $SVC(S)$ and $SVC^+(T)$.		
Consequence of AC		Local reflection
(Blass)	AC	\boldsymbol{S} can be well-ordered
	AC_X	$AC_X(S)$
	DC_λ	DC_λ for subtrees of $S^{<\lambda}$
Countable union theorem		$\operatorname{cf}(\omega_1) = \omega_1 \text{ and } [T]^{\omega} \text{ is } \sigma\text{-closed}$
(Pincus)	BPI	There is a fine ultrafilter on $[S]^{<\omega}$
	PP	AC_{WO} and $PP \upharpoonright T$: For all $X, Y \subseteq T$, if $ X \leq *$
		$ Y $ then $ X \leqslant Y $
(Karagila–Schilhan)	KWP_{α}	$ T \leqslant \mathscr{P}^{\alpha}(\mathrm{Ord}) $
(Karagila–Schilhan)	KWP^*_α	$ S \leqslant^* \mathscr{P}^{\alpha}(\mathrm{Ord}) $

- Does PP imply AC?
- ▶ Does $SVC^+(S) \land PP \upharpoonright S$ imply AC_{WO} ? I.e., does $SVC^+(S) \land PP \upharpoonright S$ imply AC_{WO} on its own?
- Does cf(ω₁) = ω and SVC⁺(S) imply that [S]^ω is not σ-closed? I.e., is the σ-closure of [S]^ω enough to guarantee the countable union theorem?

- [Bla79] Andreas Blass. "Injectivity, projectivity, and the axiom of choice". In: *Trans. Amer. Math. Soc.* 255 (1979), pp. 31–59.
- [KS24] Asaf Karagila and Jonathan Schilhan. "Intermediate models and Kinna–Wagner principles". In: *arXiv* 2409.07352 (2024).
- [RS24] Calliope Ryan-Smith. "Local reflections of choice". In: *arXiv* 2412.13785 (2024).
- [Usu21] Toshimichi Usuba. "Choiceless Löwenheim-Skolem property and uniform definability of grounds". In: *Advances in mathematical logic*. Vol. 369. 2021, pp. 161–179.