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Non-strucutral Ramsey results

Finite pigeonhole principle

∀n,r>0∃N>0 : N −→ (n)•r .

Infinite pigeonhole principle

∀r>0 : ω −→ (ω)•r .

Theorem (Finite Ramsey theorem, 1930)

∀n,k,r>0∃N>0 : N −→ (n)k
r .

Definition (Erdős–Rado partition arrow)

N −→ (n)k
r means:

For every partition of
(N

k

)
into r classes (colours) there exists X ∈

(N
n

)
such that

(X
k

)
belongs to a single part.

Theorem (Infinite finite Ramsey theorem, 1930)

∀k,r>0 : ω −→ (ω)k
r .

Coloring infinite sets: Galvin–Přírký, Silver, Ellentuck. . .
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Dual Non-structural Ramsey results

1 Finite pigeonhle: Hales–Jewett theorem 1963
2 Infinite pigeonhole: Infinite Hales–Jewett theorem (Carlson–Simpson Lemma 1984,

independently obtained by Voigt)
3 Finite Ramsey theorem: Graham–Rothschild Theorem, 1971
4 Infinite Ramsey theorem: Carlson–Simpson 1984.

Eventually generalized to an axiomatic approach to Ramsey spaces by Todorcevic.



Finite structural pigeonhole
Let G be the class of all graphs.

Theorem (Finite structural pigeonhole: Folkman 1970)

∀G∈G∀r>0∃H∈G : H −→ (G)•r .

For every finite graph G and every r > 0 there exists finite graph H such that every
r -coloring of vertices of H contains induced monochromatic subgraph isomorphic to G.

Proof.
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Proof.
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Finite structural pigeonhole
Let G be the class of all finite graphs.

Theorem (Restricted finite structural pigeonhole: Folkman 1970)

∀G∈G∀r>0∃H∈G : H −→ (G)•r .

Moreover the size of largest clique of H equals to the size of largest clique of G.

Theorem (Erdős 1959 for graphs, Erdős–Hajnal 1966)

For every u > 1 and r ,g > 0 there exists an u-uniform hypergraph of girth at least g and
chromatic number at least r .

Erdős–Hajnal =⇒ Folkman.

Given G and r obtain |G|-uniform hypergraph of girth 4 and the chromatic number r + 1
and replace every hyper-edge by a copy of G.
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Infinite structural pigeonhole

Theorem (Infinite structural pigeonhole)

Let R be the Rado (countable universal and homogeneous) graph.

R −→ (R)•2.

Also true for any other countable universal graph.

Theorem (Restricted infinite structural pigeonhole: Komjáth–Rödl 1983)

Let R3 be the (countable) homogeneous universal triangle-free graph.

R3 −→ (R3)
•
2.

Theorem (Restricted infinite structural pigeonhole: El-Zahar–Sauer, 1989)

Let k ≥ 3 and Rk be the (countable) homogeneous universal Kk -free graph.

Rk −→ (Rk )
•
2.



Infinite structural pigeonhole

Theorem (Nguyen Van Thé–Sauer, 2009)

Let d be a finite integer and Md the (countable) homogeneous universal metric space with
integer distances at most d.

Md −→ (Md )
•
2.

Not true for metric spaces with infinitely many distances, but can be saved approximately:

Theorem (Nguyen Van Thé–Sauer, 2009 using Lopez-Abad–Nguyen Van Thé, 2008)

The Urysohn sphere is oscillation-stable

New, simple, proof (also for ℓ∞) appeared on arXiv today! (Bice, de Rancourt, J.H., Konečný)

More known examples: hypergraphs, posets, certain free amalgamation classes,. . .
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Open problems

As the most general result, Zucker in 2020 characterised finitely constrained free
amalgamation classes in binary languages whose Fraïssé limits satisfies infinite structural
pigeonhole.

Sauer’s unpublished results treat some infinitely constrained free amalgamation classes in
binary language.

Many cases are open, including:
1 More general oscillation stability framework
2 Characterisation of Fraïssé limits of free amalgamation classes with relations of arity

greater than 2
3 . . .



Towards finite structural Ramsey theorem
Let Gk be the class of all finite graphs without clique of size k .

Theorem (Nešetřil–Rödl, 1975)

For every finite triangle-free graph G there exists a finite triangle-free graph H such that for
every 2-colouring of the edges of H there exists a monochromatic copy of G:

∀G∈G3∃H∈G3 : H −→ (G)•−•2

Theorem (Nešetřil–Rödl, 1976)

∀k>2∀G∈Gk∃H∈Gk : H −→ (G)•−•2 .

Proof techniques are different, due to the lack of an edge-coloring version of Erdős–Hajnal
theorem. Origin of the partite construction.

Theorem (Reiher–Rödl, 2023+)

For every u > 1 and r ,g > 0 there exists an u-uniform hypergraph of girth at least g and
edge chromatic number at least r .

138 pages, 27 beautiful figures
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Towards infinite structural Ramsey theorem

Theorem (Erdős–Hajnal–Pósa, 1973)

There exists a persistent 2-coloring of edges of the Rado graph R where every copy of R
contains both colours.

Theorem (Sauer–Pouzet 1996; also follows from unpublished Laver’s proof)

Let R be a Rado graph and let edges of R be finitely coloured. Then there is induced copy
of R with at most 2 colors: ∀r>1 : R −→ (R)•−•r ,2 .

2 is the big Ramsey degree of an edge in R. The same is true for non-edge.

Theorem (Sauer 1998)

The big Ramsey degree of edge in the universal homogeneous triangle-free graph is 2.

Theorem (Balko–Chodounský–Dobrinen–Hubička–Konečný–Vena–Zucker, 2024)

The big Ramsey degree of non-edge in R3 is 5.

A special case of a general result for finitely constrained free amalgamation classes in
finite binary languages.
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Finite structural Ramsey theorem(B
A

)
is the set of all embeddings of structure A to structure B.

Definition (Leeb’s generalization of the Erdős–Rado partition arrow)

C −→ (B)A
k,t means:

For every k -colouring of
(C

A

)
there exists f ∈

(C
B

)
such that

(f (B)
A

)
has at most t colours.

Definition (Ramsey class)

Class K of structures is Ramsey if

∀A,B∈K∃C∈K : C −→ (B)A
2,1.
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Finite structural Ramsey theorem

Theorem (Nešetřil–Rödl 1977, Abramsohn–Harrington 1978)

Let L be a relational language containing a binary relation <, and let K be the class of all
finite ordered L-structures. Then

∀A,B∈K∃C∈K : C −→ (B)A
2 .

Theorem (Ordering property, Nešeřil–Rödl 1978)

Let A be an L-structure, then there exist B such that every ordering of vertices of B
contains all possible orderings of A as substructures.

Theorem (Nešetřil–Rödl theorem 1977)

Let L be a relational language containing a binary relation <, and let K be the class of all
finite ordered L-structures. Then

∀A,B∈K∃C∈K : C −→ (B)A
2 .

Moreover, C can be constructed in a way so that every irreducible substructure of C
(without the order) is contained in a copy of B.
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Finite structural Ramsey theorem

Examples of known Ramsey classes
• linear orders (Ramsey 1930)
• boolean algebras with anti lexicographic ordering (Graham–Rothschild 1972)
• linearly ordered free amalgamation classes (Nešetřil–Rödl theorem, 1977)
• partial orders with linear extensions (Nešetřil–Rödl, 1984, proofs later)
• dual relational structures with anti lexicographic ordering

(Prömel 1985, Frankl, Rödl, Graham 1987)

1989: Nešetřil noticed connection to homogeneous structures
2005: Kechris–Pestov–Todorcevic correspondence
precompact expansions and expansion property

• Metric spaces (Nešetřil, 2005)
• Local dense order with unary predicate (Laflamme, Nguyen Van Thé, Sauer 2010)
• Linearly ordered partial Steiner system (Bhat–Nešetřil–Reiher–Rödl 2018)
• Linearly ordered bowtie-free graphs (Hubička–Nešetřil 2018)
• . . .
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1989: Nešetřil noticed connection to homogeneous structures
2005: Kechris–Pestov–Todorcevic correspondence
precompact expansions and expansion property

• Metric spaces (Nešetřil, 2005)
• Local dense order with unary predicate (Laflamme, Nguyen Van Thé, Sauer 2010)
• Linearly ordered partial Steiner system (Bhat–Nešetřil–Reiher–Rödl 2018)
• Linearly ordered bowtie-free graphs (Hubička–Nešetřil 2018)
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Finite structural Ramsey theorem

Theorem (Hubička–Nešetřil 2019)

Let L be a relational language containing a binary relation <, and let K be the class of all
finite ordered L-structures. Then ∀A,B∈K∃C∈K : C −→ (B)A

2 .

Definition (Homomorphism-embedding)

Let A and B be structures. A homomorphism f : A → B is a homomorphism-embedding if
the restriction f |C is an embedding whenever C is an irreducible substructure of A.

Theorem (Blackbox on the partite construction, Hubička–Nešetřil 2019)

Let L be a language, n ≥ 1, and A, B, and C0 finite L-structures such that A is irreducible
and C0 −→ (B)A

2 . Then there exists a finite L-structure C such that C −→ (B)A
2 and

1 there exists a homomorphism-embedding C → C0,
2 for every substructure C′ of C with at most n vertices there exists a structure T which

is a tree amalgam of copies of B, and a homomorphism-embedding C′ → T, and
3 every irreducible substructure of C extends to a copy of B.

Open problem: Can we strenghten 2 so C′ embedds into T?
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Let L be a language, n ≥ 1, and A, B, and C0 finite L-structures such that A is irreducible
and C0 −→ (B)A

2 . Then there exists a finite L-structure C such that C −→ (B)A
2 and

1 there exists a homomorphism-embedding C → C0,
2 for every substructure C′ of C with at most n vertices there exists a structure T which

is a tree amalgam of copies of B, and a homomorphism-embedding C′ → T, and
3 every irreducible substructure of C extends to a copy of B.

Open problem: Can we strenghten 2 so C′ embedds into T?



Open problems

Question (Bodirsky–Pinsker–Tsankov 2013)

Does the age of every ω-categorical structure have a precompact Ramsey expansion?

Theorem (Evans–Hubička–Nešetřil 2019)

NO: There exists a class of structures built by Hrushovski construction with ω-categorical
Fraïssé limit and no precompact expansion.

Question (Bodirsky–Pinsker–Tsankov 2011)

Does every amalgamation class in a finite relational language have a Ramsey expansion
in a finite relational language?

Some explicit open cases:
1 Ramsey expansion of the class of all finite graphs of girth 4
2 Ramsey expansion of the class of all hypergraphs omitting odd cycles up to given

length ℓ.
3 Ramsey expansion of H4-free tournaments
4 Ramsey expansion of the class of all finite groups
5 Are equipartitions Ramsey?
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Infinite structural Ramsey theorem, arity ≤ 2

Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)

The order of rationals (Q,≤) has finite big Ramsey degrees: for every n ∈ ω there exists
T (n) ∈ ω such that whenever n-element subsets of Q are finitely colored, there exists a
copy of (Q,≤) in itself touching at most T (n) many colors.

T (n) = tan(2n−1)(0).

tan(2n−1)(0) is the (2n − 1)st derivative of the tangent evaluated at 0.

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256
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Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)

The order of rationals (Q,≤) has finite big Ramsey degrees: for every n ∈ ω there exists
T (n) ∈ ω such that whenever n-element subsets of Q are finitely colored, there exists a
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T (5) = 7936,T (6) = 353792,T (7) = 22368256

Proof technique, based on the Milliken tree theorem generalizes to other cases:
1 Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of

Rado graph.
2 Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous

ultrametric spaces.
3 Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees

of homogeneous dense local order.



Infinite structural Ramsey theorem, arity ≤ 2

Theorem (Dobrinen 2020)

Big Ramsey degrees of the countable universal homogeneous triangle-free graphs are
finite.

In 2023 generalised to Henson graphs. Easier proof by Hubička, 2020+.

Theorem (Zucker 2020)

Every Fraïssé limit of a finitely constrained free amalgamation class in finite binary
language has finite big Ramsey degrees.

Big Ramsey degrees precisely characterised in 2024 by
Balko–Chodounský–Dobrinen–Hubička–Konečný–Vena–Zucker. Dobrinen–Zucker gave
Silver-like infinite dimensional extension (2024).

Theorem (Hubička 2020)

Big Ramsey degrees of the universal homogeneous partial order are finite.
Big Ramsey degrees of the universal homogeneous partial Urysohn space with finitely
many integer distances are finite.

Big Ramsey degrees precisely characterised in 2023 by
Balko–Chodounský–Dobrinen–Hubička–Konečný–Vena–Zucker.
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Big Ramsey degrees of the universal homogeneous partial order are finite.
Big Ramsey degrees of the universal homogeneous partial Urysohn space with finitely
many integer distances are finite.

Big Ramsey degrees precisely characterised in 2023 by
Balko–Chodounský–Dobrinen–Hubička–Konečný–Vena–Zucker.
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Infinite structural Ramsey theorem

Theorem (Balko–Chodounský–Hubička–Konečný–Vena 2020)

Big Ramsey degrees of the universal homogeneous 3-uniform hypergraph is finite.

Theorem (Braunfeld–Chodounský–de Rancourt–Hubička–Kawach–Konečný 2023)

Let L be a language with only finitely many relations of every arity > 1. Then the Fraïssé
limit of all finite L-structures where all relations are injective has finite big Ramsey degrees.

1 Precise characterisation is WIP.
2 Persistent colouring is known for infinitely many binary relations.

(Hubička–Zucker, yet unpublished)
3 A general Ramsey theorem for trees which can handle arbitrary arity and forbidden

constraints.
(Balko–Chodounský–Dobrinen–Hubička–Nešetřil–Konečný–Zucker, 2023+)

4 Type-respecting amalgamation property identified as key property that makes “our
proof to work”.
(Aranda–Braunfeld–Chodounský–Hubička–Konečný–Nešetřil–Zucker, 2023+)

5 Initial results on big Ramsey degrees on structures with functions
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Let L be a language with only finitely many relations of every arity > 1. Then the Fraïssé
limit of all finite L-structures where all relations are injective has finite big Ramsey degrees.

1 Precise characterisation is WIP.
2 Persistent colouring is known for infinitely many binary relations.
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Open problems

1 Let P be a 3-uniform hypergraph on 4 vertices with all but one hyper-edge. Does the
universal and homogeneous P-free hypergraph admit upper bounds on big Ramsey
degrees?

2 What is the big Ramsey degree behaviour of boolean algebras
3 Identify more classes with type-respecting amalgamation property.
4 If class fails to have type-respecting amalgamation property, does it have infinite big

Ramsey degrees?
5 Does the finiteness of big Ramsey degrees imply the existence of a big Ramsey

structure?

Definition (Big Ramsey structure, Zucker 2017)

Let K be a countable structure and let K∗ be an expansion of K. We call K∗ a big Ramsey
structure for K if the following holds:

1 The colouring of K given by K∗ is unavoidable. Namely, for every finite substructure
A∗ of K∗ and every embedding f : K → K it holds that there is an embedding
e : A∗ → K∗ such that e[A] ⊆ f [K ].

2 For every finite substructure A of K, the number of its mutually non-isomorphic
expansions in K∗ is finite and equal to the big Ramsey degree of A in K.
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