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Short History

Let G be a non-locally compact group. PROBLEM: there is no Haar measure
on the group G.

But we like (Haar) measure zero sets (don’t we?).

Definition (Christensen, 1972, variation I)

Let G be a group and A ⊆ G. The set A is called a Haar null set if there exists
a probability measure µ and a Borel set B such that A ⊆ B and µ(gBh) = 0
for every g, h ∈ G. Notation: HN (G).

Definition (Christensen, 1972, variation II)

Let G be a group and A ⊆ G. The set A is called a generalized Haar null set if
there exists a probability measure µ and a universally measurable set B such
that A ⊆ B and µ(gBh) = 0 for every g, h ∈ G. Notation: GHN (G).

From now on, G will be a Polish group.
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Relation of Haar null sets to Haar measure zero sets

Theorem

The system of (generalized) Haar null sets form a σ-ideal.

Theorem

If the group G is locally compact then a set A ⊆ G has Haar measure zero
⇐⇒ A is Haar null ⇐⇒ A is generalized Haar null (so this is really a
generalization of the notion of a Haar measure zero set).

If we drop the locally compactness assumption, what is the relation between
variation I and II?

Theorem (Solecki)

Let G be a non-locally compact Abelian group. Then there exists a coanalytic
set A such that A ∈ GHN (G) \ HN (G).

Remark: in the non-locally compact case there exists continuum many
pairwise disjoint closed sets and none of them is Haar null (in contrast to the
locally compact case).
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Dualizing, Haar meager sets, generalized Haar meager sets?

Theorem

A subset A of G is Haar null/generalized Haar null ⇐⇒ there exists a Borel
set/universally measurable set B and a continuous function f : 2ω −→ G such
that A ⊆ B and f−1(gBh) has measure zero for every g, h.

This latter theorem allows us to introduce Haar meager and generalized Haar
meager sets.

Definition (Darji, 2013)

A subset A of G is Haar meager if there exists a Borel set B and a continuous
function f : 2ω −→ G such that A ⊆ B and f−1(gBh) is meager for every g, h.
Notation: HM(G).

If G is locally compact, then HM(G) = M(G).
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Category analogue to universal measurability?

What should be the definition of generalized Haar meager sets?

Definition

A subset B of a Polish space X is called universally Baire if for every
continuous function f : ωω −→ X , the set f−1(B) has the property of Baire.

CAUTION: a set theorist may call such a set ω-universally Baire.

Theorem (Elekes, P.)

For a subset A of a Polish space X the followings are equivalent:
(1) the set A is universally Baire,

(2) for every Borel isomorphism f : [0, 1] −→ X, the set f−1(A) has the
property of Baire.
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Generalized Haar meager sets

Definition (Elekes, P)

A subset A of G is a generalized Haar meager set if there exists a universally
Baire set B and a continuous function f : 2ω −→ G such that A ⊆ B and
f−1(gBh) is meager for every g, h. Notation: GHM(G).

Theorem

Generalized Haar meager sets form a σ-ideal.
HM(G) ⊆ GHM(G) ⊆ M(G). If G is locally compact, then
GHM(G) = M(G).

Theorem

Let G be a non-locally compact Abelian group, then:

HM(G) ⊊ GHM(G) ⊊ M(G).
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Cardinal invariants of the Haar ideals, old and recent results

From now on, G denotes the Polish (non-locally compact) group Zω, but
many results survive either if the group G has a two-sided invariant metric or
if G admits a continuous surjective homomorphism onto a non-discrete
locally compact Polish group H.

Theorem (Elekes, Poór, Vidnyánszky)

add(HN (G)) = ω1

cov(HN (G)) = min{b, cov(N )},

non(HN (G)) = max{d, non(N )},

cof(HN (G)) = c.

Theorem (M. Doležal, V. Vlasák and Elekes, Poór)

add(HM(G)) = ω1,

cov(HM(G)) = cov(M),

non(HM(G)) = non(M),

cof(HM(G)) = c.
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many results survive either if the group G has a two-sided invariant metric or
if G admits a continuous surjective homomorphism onto a non-discrete
locally compact Polish group H.

Theorem (Elekes, Poór, Vidnyánszky)

add(HN (G)) = ω1

cov(HN (G)) = min{b, cov(N )},

non(HN (G)) = max{d, non(N )},

cof(HN (G)) = c.

Theorem (M. Doležal, V. Vlasák and Elekes, Poór)

add(HM(G)) = ω1,

cov(HM(G)) = cov(M),

non(HM(G)) = non(M),

cof(HM(G)) = c.
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Now let’s put the word generalized everywhere

Theorem (T. Banakh)

add(GHN (G)) = add(N )

cov(GHN (G)) = min{b, cov(N )},

non(GHN (G)) = max{d, non(N )},

under Martin’s axiom: cof(GHN (G)) > c,

Theorem (Elekes, Kocsis, P.)

cov(GHM(G)) = cov(M),

non(GHM(G)) = non(M),

under CH: cof(GHM(G)) > c.

Question

add(GHM(G)) =???????????
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The end

Thank you for your attention!
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