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ω1-trees

Recall the following definitions:

Definition

We say that an ω1-tree T is Aronszajn if it has no cofinal branches.

Definition

We say that an ω1-tree T is Suslin if it is Aronszajn and does not
contain uncountable antichains.

Definition

We say that an ω1-tree T is Kurepa if it has at least ω2-many
cofinal branches.
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Kurepa hypothesis

We say that the Kurepa Hypothesis, KH, holds if there exists a
Kurepa tree.

(Jensen) ♢+ implies the existence of a Kurepa tree.

(Silver) Silver proved the consistency of ¬KH by showing that
after forcing with the Lévy collapse to turn an inaccessible
cardinal κ into ω2, there are no Kurepa trees.

(Solovay) The inaccessible cardinal is necessary because if ω2

is not an inaccessible cardinal in L then there exists a Kurepa
tree.
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Adding a Kurepa tree

Jin and Shelah asked whether it is consistent that CH holds,
there are no Kurepa trees, and there exists a ccc forcing of
size at most ω1 which adds a Kurepa tree.

This question was motivated in part by Shelah’s result that
adding a single Cohen real adds a Suslin tree.

The model is not a Lévy collapse of an inaccessible cardinal
which becomes the new ω2.
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A result of Jensen and Schlechta

(Jensen) If □ω1 holds then there is a ccc forcing which adds
an ω1-Kurepa tree. However this ccc forcing has size ω2.

(Jensen and Schlechta) There is a model where ¬KH holds
and it is indestructible under all ccc forcings.

The model is the Lévy collapse of a Mahlo cardinal which
becomes the new ω2.

Note that ¬KH holds already in the Lévy collapse of an
inaccessible cardinal but for the indestructibility under ccc
forcings a Mahlo cardinal is needed.
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Result of Jin and Shelah

Jin and Shelah proved that assuming the existence of an
inaccessible cardinal κ, there exists a forcing which preserves
ω1, makes κ the new ω2, forces that there are no Kurepa
trees, and introduces a countably distributive Aronszajn tree
which as a forcing notion produces a Kurepa tree.
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Almost Kurepa Suslin tree

In the Jin-Shelah model, forcing with the Aronszajn tree introduces
another tree which is a Kurepa tree.

Now we define a stronger concept:

Definition

We say that an ω1-tree T is an almost Kurepa Suslin tree if it is a
Suslin tree which becomes a Kurepa tree after forcing with it.

Note: When forcing with a tree T , the order is the reverse order of
the tree T .
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Existence of an almost Kurepa Suslin tree

(Jensen) ♢+ implies that there is an almost Kurepa Suslin
tree.

(Bilaniuk) ♢ and KH imply that there is an almost Kurepa
Suslin tree.

Bilaniuk constructed an almost Kurepa Suslin tree S with at
least ω2-many automorphisms indexed by cofinal branches of
a fixed Kurepa tree T : {πb | b is a cofinal branch T}. The
automorphisms are non-trivial in the sense that for all b ̸= b′

and s ∈ S there is t ≥ s such that πb(t) ̸= πb′(t).

Bilaniuk asked whether it is consistent that ♢ holds, there are
no Kurepa trees, and there exists a Suslin tree with at least
ω2-many automorphisms.

Related to this question is the question whether it is
consistent that there exists an almost Kurepa Suslin tree and
there are no Kurepa trees.
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Lévy collapse

In generic extensions by the Lévy collapse which turns an
inaccessible cardinal κ into ω2 the following hold:

(Silver) There are no Kurepa trees.

(Folklore) There is no ccc forcing of size at most ω1 which
adds an Kurepa tree; consequently there are no almost Kurepa
Suslin trees.

(Bilaniuk) Every Suslin tree has at most ω1-many
automorphisms.
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Our result

Theorem (Krueger, S.)

Suppose that there exists an inaccessible cardinal κ and there exists
an infinitely splitting normal free Suslin tree S. Then there exists a
forcing poset P such that the product Coll(ω1, < κ)× P forces:

κ = ω2;

GCH;

S is Suslin;

there exist an almost disjoint family {fα |α < ω2} of
automorphisms of S;

there are no Kurepa trees.
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Corollaries of our result:

1 It is consistent that CH holds, there are no Kurepa trees, and
there exists a ccc forcing of size at most ω1 which adds a
Kurepa tree.

2 It is consistent that there exists an almost Kurepa Suslin tree
and there are no Kurepa trees.

3 It is consistent that ♢ holds, there are no Kurepa trees, and
there exists a Suslin tree with at least ω2-many
automorphisms.

4 It is consistent that there exists a non-saturated Aronszajn
tree and there are no Kurepa trees.
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Cohen forcing and Kurepa trees

To our knowledge it is open whether ¬KH is preserved by a single
Cohen forcing.
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Weak Kurepa trees

Recall the following definition:

Definition

We say that a tree T with size and height ω1 is a weak Kurepa
tree if it has at least ω2-many cofinal branches. We say that the
weak Kurepa Hypothesis, wKH, holds if there exists a weak Kurepa
tree on ω1.
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The negation of the weak Kurepa hypothesis

Some basic properties:

If CH holds, then 2<ω1 is a weak Kurepa tree.

Therefore ¬wKH implies 2ω > ω1.

(Mitchell) In the generic extension by Mitchell forcing up to
an inaccessible cardinal ¬wKH holds.

(Silver) The inaccessible cardinal is necessary. If ¬wKH holds,
then ω2 is inaccessible in L.

(Baumgartner) If ¬wKH holds, then 2ω = ω2 implies
2ω1 = ω2; in fact, even ♢+(ω2 ∩ cof(ω1)) holds.

Baumgartner’s result can be generalized as follows: if
2ω < ℵω1 , then 2ω1 = 2ω.
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Cohen forcing and weak Kurepa trees

In our work with Radek Honzik and Chris Lambie Hanson we
showed that the negation of weak Kurepa hypothesis is preserved
by all σ-centered forcings.

Theorem (Honzik, Lambie-Hanson, S.)

GMP implies ¬wKH is preserved by all σ-centered forcings, i.e. if
V is a transitive model satisfying GMP, P ∈ V is σ-centered, and
G is P-generic over V , then V [G ] satisfies ¬wKH. In particular,
¬wKH is preserved over models of GMP by adding any number of
Cohen subsets of ω.

In fact, the argument needs only a guessing model property for
small sets which turns out to be equivalent to ¬wKH: ¬wKH is
therefore always preserved by σ-centered forcings.
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¬KH vs ¬wKH

¬wKH is indestructible by all σ-centered forcings, in particular
it is indestructible by Cohen forcing of any length (if a weak
Kurepa tree is added, it is added by a small part of Cohen
which is σ-centered). On the other hand, it is open whether
¬KH itself is indestructible by one Cohen forcing.

Note that ¬wKH implies ¬KH, hence if there is a model
where ¬KH is destructible by adding one Cohen subset of ω,
then there has to be a weak Kurepa tree in that model.

(Jensen and Schlechta) Under the assumption of Mahlo
cardinal, there is a model (Lévy collapse) where ¬KH holds
and it is indestructible under all ccc forcings. The analogous
question is open for ¬wKH, with the Mitchell model instead
of the Lévy model. We were able to get a partial result in this
direction.
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Mitchell forcing

The Mitchell forcing is the standard way of collapsing a large
cardinal κ to a double succesor of a regular cardinal µ while adding
κ-many new subsets of µ. For this lecture µ will be just ω.
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Theorem (Honzik, S.)

Suppose κ is Mahlo. Then ¬wKH is indestructible in V [M(ω, κ)]
under all ccc forcings which live in V [Add(ω, κ)].

Note that V [Add(ω, κ)] ⊆ V [M(ω, κ)] so the statement of the
theorem makes sense.

The proof is based on an indestructibility result of Jensen and
Schlechta. We need to assume that the ccc forcing lives in
V [Add(ω, κ)] for the quotient analysis.
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A result of Todorcevic

Suppose κ is inaccessible. Todorcevic showed that ¬wKH is
indestructible over the Mitchell model V [M(ω, κ)] under any
finite-support iteration of length κ of ccc forcing notions which
have size at most ω1 and do not add new cofinal branches to
ω1-trees.

The proof uses the fact that small forcings of size ω1 are added by
initial segments of the Mitchell iteration, so a simplified quotient
analysis can be done.
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Open questions

1 Is ¬KH indestructible by one Cohen forcing?

Note that ¬wKH is indestructible by Cohen forcing.

2 Is there a model where ¬wKH holds and all ccc forcings
preserve it? In particular, is ¬wKH consistent with MAω2?

Note that ¬wKH is consistent with MAω1 (Todorcevic).
Moreovere note that there is a model where ¬KH is
indestructible by all ccc forcings and in particular ¬KH is
consistent with MAω2 (Jensen and Schlechta).
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