Hyperfiniteness on topological Ramsey spaces

Balázs Bursics

Eötvös University, Budapest

January 27, 2025

Joint work with Zoltán Vidnyánszky

Balázs Bursics

Hyperfiniteness on topological Ramsey spaces

January 27, 2025

Borel equivalence relations

Definition

A *Borel equivalence relation* is an equivalence relation E on a standard Borel space X, which is Borel as a subset of $X \times X$.

Definition

A Borel equivalence relation E on a standard Borel space X is *countable*, if all E-classes are countable. Abbr.: CBER

Definition

Let X, Y be standard Borel spaces. An equivalence relation $E \subseteq X \times X$ is said to be *Borel reducible* to an equivalence relation $F \subseteq Y \times Y$, denoted $E \leq_B F$, if there exists a Borel map $\varphi : X \to Y$ such that $x_1 E x_2 \Leftrightarrow \varphi(x_1) F \varphi(x_2)$.

Reducibility between the key equivalence relations [3]

Balázs Bursics

Hyperfiniteness on topological Ramsey spaces

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reducibility between the key equivalence relations [3]

Hyperfiniteness on topological Ramsey spaces

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ 釣へで

Hyperfiniteness

Definition

A CBER *E* is *hyperfinite*, if there exist CBERs $E_0 \subseteq E_1 \subseteq E_2 \subseteq \ldots$ with finite classes such that $E = \bigcup_{n \in \mathbb{N}} E_n$.

Example

For $x, y \in 2^{\mathbb{N}}$ let $x \mathbb{E}_0 y \Leftrightarrow (\exists n) \ (\forall k \ge n) \ x(k) = y(k)$.

Definition

A CBER *E* is *hyperfinite*, if there exist CBERs $E_0 \subseteq E_1 \subseteq E_2 \subseteq \ldots$ with finite classes such that $E = \bigcup_{n \in \mathbb{N}} E_n$.

Example

For
$$x, y \in 2^{\mathbb{N}}$$
 let $x \mathbb{E}_0 y \Leftrightarrow (\exists n) \ (\forall k \ge n) \ x(k) = y(k)$.

Theorem

The following are equivalent for a Borel equivalence relation E on a standard Borel space X:

- E is hyperfinite
- E is induced by a Borel action of \mathbb{Z}
- $E \leq_B \mathbb{E}_0$ and E is countable

Definition

A CBER *E* on *X* is *measure-hyperfinite* if for any Borel probability measure μ on *X* there exists a Borel set *B* with $\mu(B) = 1$ such that $E \upharpoonright B$ is hyperfinite.

Problem

Is every measure-hyperfinite equivalence relation hyperfinite?

Definition

A CBER *E* on *X* is *measure-hyperfinite* if for any Borel probability measure μ on *X* there exists a Borel set *B* with $\mu(B) = 1$ such that $E \upharpoonright B$ is hyperfinite.

Problem

Is every measure-hyperfinite equivalence relation hyperfinite?

Theorem (Hjorth-Kechris [2], Sulliwan-Weiss-Wright [8], Woodin)

Let *E* be a CBER on a standard Borel space. Then there is a comeager invariant Borel set *C* such that $E \upharpoonright C$ is hyperfinite.

Topological Ramsey spaces - the Ellentuck space

- set of infinite objects: [ℕ]^ℕ
- quasiorder: $A \leq B \Leftrightarrow A \subseteq B$
- finite approximations: $[\mathbb{N}]^{<\mathbb{N}}$

 A, B, C, \ldots

 a, b, c, \ldots

Topological Ramsey spaces - the Ellentuck space

- set of infinite objects: $[\mathbb{N}]^{\mathbb{N}}$
- quasiorder: $A \leq B \Leftrightarrow A \subseteq B$
- finite approximations: $[\mathbb{N}]^{<\mathbb{N}}$

 A, B, C, \ldots

 a, b, c, \ldots

Theorem (Galvin-Prikry)

For any finite Borel coloring $c : [\mathbb{N}]^{\mathbb{N}} \to k$ there exists a set $A \in [\mathbb{N}]^{\mathbb{N}}$ such that c is constant on $[A]^{\mathbb{N}}$.

Topological Ramsey spaces - the Ellentuck space

- set of infinite objects: [ℕ]^ℕ
- quasiorder: $A \leq B \Leftrightarrow A \subseteq B$
- finite approximations: $[\mathbb{N}]^{<\mathbb{N}}$

 a, b, c, \ldots

A.B.C...

Theorem (Galvin-Prikry)

For any finite Borel coloring $c : [\mathbb{N}]^{\mathbb{N}} \to k$ there exists a set $A \in [\mathbb{N}]^{\mathbb{N}}$ such that c is constant on $[A]^{\mathbb{N}}$.

Meta theorem 1. (Todorčević [9])

For any infinite object A and finite nice coloring of the infinite objects there exists $B \le A$ such that $\{C : C \le B\}$ is monochromatic.

Notation

 $[b, A] = \{B : B \le A \text{ and } B \text{ has approximation } b\}$

Meta theorem 2. (Todorčević [9])

Let *A* be an infinite object and let *b* be approximation. For every finite nice coloring $c : [b, A] \rightarrow k$ there exists $B \in [b, A]$ such that [b, B] is monochromatic.

Notation

 $[b, A] = \{B : B \le A \text{ and } B \text{ has approximation } b\}$

Meta theorem 2. (Todorčević [9])

Let *A* be an infinite object and let *b* be approximation. For every finite nice coloring $c : [b, A] \rightarrow k$ there exists $B \in [b, A]$ such that [b, B] is monochromatic.

Definition

A set \mathcal{X} of infinite objects is *Ramsey* if for every infinite object A and finite approximation b there is some $B \in [b, A]$ such that $[b, B] \subseteq \mathcal{X}$ or $[b, B] \cap \mathcal{X} = \emptyset$. A set \mathcal{N} of infinite objects is *Ramsey null* if for every infinite object A and finite approximation b there is some $B \in [b, A]$ such that $[b, B] \cap \mathcal{N} = \emptyset$.

Theorem (Mathias [5], Soare [7])

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Then *E* is hyperfinite on a Ramsey positive set, i.e. there is $A \in [\mathbb{N}]^{\mathbb{N}}$ such that $E \upharpoonright [A]^{\mathbb{N}}$ is hyperfinite.

Theorem (Mathias [5], Soare [7])

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Then *E* is hyperfinite on a Ramsey positive set, i.e. there is $A \in [\mathbb{N}]^{\mathbb{N}}$ such that $E \upharpoonright [A]^{\mathbb{N}}$ is hyperfinite.

Question

Is the analogue true on other topological Ramsey spaces?

Theorem (Mathias [5], Soare [7])

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Then *E* is hyperfinite on a Ramsey positive set, i.e. there is $A \in [\mathbb{N}]^{\mathbb{N}}$ such that $E \upharpoonright [A]^{\mathbb{N}}$ is hyperfinite.

Question

Is the analogue true on other topological Ramsey spaces?

- Kanovei-Sabok-Zapletal [4]: Yes, for the Milliken space
- Wang-Panagiotopoulos [6]: Even with smoothness for the Carlson-Simpson space

Theorem (Mathias [5], Soare [7])

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Then *E* is hyperfinite on a Ramsey positive set, i.e. there is $A \in [\mathbb{N}]^{\mathbb{N}}$ such that $E \upharpoonright [A]^{\mathbb{N}}$ is hyperfinite.

Question

Is the analogue true on other topological Ramsey spaces?

- Kanovei-Sabok-Zapletal [4]: Yes, for the Milliken space
- Wang-Panagiotopoulos [6]: Even with smoothness for the Carlson-Simpson space

Theorem (B.-Vidnyánszky [1])

Let \mathcal{R} be a topological Ramsey space and E be a CBER on \mathcal{R} . Then there is a Ramsey positive set $A \subseteq \mathcal{R}$ such that $E \upharpoonright A$ is hyperfinite.

Suppose that E is a CBER on $[\mathbb{N}]^{\mathbb{N}}$. As all classes of E are countable, there are Borel involutions φ_n on $[\mathbb{N}]^{\mathbb{N}}$ such that $E = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\varphi_n)$. Let $G_n = \bigcup_{i \in n} \operatorname{graph}(\varphi_i)$

Suppose that E is a CBER on $[\mathbb{N}]^{\mathbb{N}}$. As all classes of E are countable, there are Borel involutions φ_n on $[\mathbb{N}]^{\mathbb{N}}$ such that $E = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\varphi_n)$. Let $G_n = \bigcup_{i \in n} \operatorname{graph}(\varphi_i)$

It suffices to construct $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ such that

- The first *n* elements are the same for $\{A_k : k \ge n\}$
- $G_n \upharpoonright [A_n]^{\mathbb{N}} \subseteq \mathbb{E}_0$ for every $n \in \mathbb{N}$

Suppose that E is a CBER on $[\mathbb{N}]^{\mathbb{N}}$. As all classes of E are countable, there are Borel involutions φ_n on $[\mathbb{N}]^{\mathbb{N}}$ such that $E = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\varphi_n)$. Let $G_n = \bigcup_{i \in n} \operatorname{graph}(\varphi_i)$

It suffices to construct $A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ such that

• The first *n* elements are the same for $\{A_k : k \ge n\}$

• $G_n \upharpoonright [A_n]^{\mathbb{N}} \subseteq \mathbb{E}_0$ for every $n \in \mathbb{N}$

Suppose A_n is given, let t be the set of n smallest elements of it. Let $A = A_n \setminus t$, the following lemma gives some $A' \subseteq A$, take $A_{n+1} = t \cup A'$.

Lemma

Let *G* be a bounded degree Borel graph on $[\mathbb{N}]^{\mathbb{N}}$, and suppose that $\max t < \min A$ for $t \in [\mathbb{N}]^n$ and $A \in [\mathbb{N}]^{\mathbb{N}}$. Then there exists $A' \subseteq A$ such that $G \upharpoonright [t \cup A']^{\mathbb{N}} \subseteq \mathbb{E}_0$.

Lemma

Let *G* be a bounded degree Borel graph on $[\mathbb{N}]^{\mathbb{N}}$, and suppose that $\max t < \min A$ for $t \in [\mathbb{N}]^n$ and $A \in [\mathbb{N}]^{\mathbb{N}}$. Then there exists $A' \subseteq A$ such that $G \upharpoonright [t \cup A']^{\mathbb{N}} \subseteq \mathbb{E}_0$.

Lemma

Let *G* be a bounded degree Borel graph on $[\mathbb{N}]^{\mathbb{N}}$, and suppose that $\max t < \min A$ for $t \in [\mathbb{N}]^n$ and $A \in [\mathbb{N}]^{\mathbb{N}}$. Then there exists $A' \subseteq A$ such that $G \upharpoonright [t \cup A']^{\mathbb{N}} \subseteq \mathbb{E}_0$.

We define a bounded degree graph G^* on $[A]^{\mathbb{N}}$ by

$$(B,C)\in G^*\iff \big(B\neq C\wedge \exists r,s\subseteq t:(B\cup r,C\cup s)\in G\big).$$

Lemma

Let *G* be a bounded degree Borel graph on $[\mathbb{N}]^{\mathbb{N}}$, and suppose that $\max t < \min A$ for $t \in [\mathbb{N}]^n$ and $A \in [\mathbb{N}]^{\mathbb{N}}$. Then there exists $A' \subseteq A$ such that $G \upharpoonright [t \cup A']^{\mathbb{N}} \subseteq \mathbb{E}_0$.

We define a bounded degree graph G^* on $[A]^{\mathbb{N}}$ by

$$(B,C) \in G^* \iff (B \neq C \land \exists r, s \subseteq t : (B \cup r, C \cup s) \in G).$$

By a classical result of Kechris-Solecki-Todorčević, every bounded degree Borel graph admits a finite Borel vertex coloring. Let $c : [A]^{\mathbb{N}} \to k$ be such a coloring of G^* .

Lemma

Let *G* be a bounded degree Borel graph on $[\mathbb{N}]^{\mathbb{N}}$, and suppose that $\max t < \min A$ for $t \in [\mathbb{N}]^n$ and $A \in [\mathbb{N}]^{\mathbb{N}}$. Then there exists $A' \subseteq A$ such that $G \upharpoonright [t \cup A']^{\mathbb{N}} \subseteq \mathbb{E}_0$.

We define a bounded degree graph G^* on $[A]^{\mathbb{N}}$ by

$$(B,C) \in G^* \iff (B \neq C \land \exists r, s \subseteq t : (B \cup r, C \cup s) \in G).$$

By a classical result of Kechris-Solecki-Todorčević, every bounded degree Borel graph admits a finite Borel vertex coloring. Let $c : [A]^{\mathbb{N}} \to k$ be such a coloring of G^* .

By the Galvin-Prikry theorem, there exist $A' \subseteq A$ such that c is constant on $[A']^{\mathbb{N}}$.

But this means that $B, C \in [t \cup A']^{\mathbb{N}}$ cannot be *G*-related, unless $B \setminus t = C \setminus t$, yielding $B\mathbb{E}_0C$.

A combinatorial theorem

Definition

Let *G* be a graph, $B \subseteq V(G)$. The set *B* is called *k*-separated if for any $x \neq x' \in B$ we have $\operatorname{dist}_G(x, x') > k$.

Theorem (B.-Vidnyánszky [1])

Let *E* be a CBER on the space *X*, let $(G_n)_{n \in \mathbb{N}}$ be an increasing sequence of bounded degree Borel graphs such that $\bigcup_n G_n = E$, and let $f : \mathbb{N} \to \mathbb{N}$ be such that $\forall n \in \mathbb{N}$ $f(n+1) \ge 2 \cdot (f(n)+1)$. Moreover, assume that $B_n \subseteq X$ are Borel sets so that every B_n is f(n)-separated in G_n . Then $E \upharpoonright B$ is hyperfinite, where $B = \{x : \exists^{\infty} n \ (x \in B_n)\}$.

A combinatorial theorem

Definition

Let *G* be a graph, $B \subseteq V(G)$. The set *B* is called *k*-separated if for any $x \neq x' \in B$ we have $\operatorname{dist}_G(x, x') > k$.

Theorem (B.-Vidnyánszky [1])

Let *E* be a CBER on the space *X*, let $(G_n)_{n \in \mathbb{N}}$ be an increasing sequence of bounded degree Borel graphs such that $\bigcup_n G_n = E$, and let $f : \mathbb{N} \to \mathbb{N}$ be such that $\forall n \in \mathbb{N}$ $f(n+1) \ge 2 \cdot (f(n)+1)$. Moreover, assume that $B_n \subseteq X$ are Borel sets so that every B_n is f(n)-separated in G_n . Then $E \upharpoonright B$ is hyperfinite, where $B = \{x : \exists^{\infty} n \ (x \in B_n)\}$.

By this theorem it suffices to find f(n)-separated sets B_n such that $\{x : \exists^{\infty} n \ (x \in B_n)\}$ is Ramsey positive

Questions

Question

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Is there a Ramsey co-null Borel set *B* such that $E \upharpoonright B$ is hyperfinite?

< 17 ▶

< 3 >

Questions

Question

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Is there a Ramsey co-null Borel set *B* such that $E \upharpoonright B$ is hyperfinite?

Question

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$ and $E = \bigcup_n G_n$ where G_n are all bounded degree. Is there necessarily a sequence of Borel sets B_n such that B_n is f(n)-separated in G_n , where *f* is a function obeying the previous theorem and $\{x : \exists^{\infty} n \ x \in B_n\}$ is Ramsey co-null?

Questions

Question

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Is there a Ramsey co-null Borel set *B* such that $E \upharpoonright B$ is hyperfinite?

Question

Let *E* be a CBER on $[\mathbb{N}]^{\mathbb{N}}$ and $E = \bigcup_n G_n$ where G_n are all bounded degree. Is there necessarily a sequence of Borel sets B_n such that B_n is f(n)-separated in G_n , where *f* is a function obeying the previous theorem and $\{x : \exists^{\infty} n \ x \in B_n\}$ is Ramsey co-null?

Question (Wang-Panagiotopoulos [6])

Characterize those topological Ramsey spaces on which any CBER is smooth on some positive set.

Thank you!

B. Bursics and Z. Vidnyánszky.

Hyperfiniteness on topological Ramsey spaces. arXiv:2412.01315, 2024.

G. Hjorth and A. S. Kechris.

Borel equivalence relations and classifications of countable models. Annals of pure and applied logic, 82(3):221–272, 1996.

V. Kanovei.

Borel equivalence relations: Structure and classification, volume 44. American Mathematical Soc., 2008.

V. Kanovei, M. Sabok, and J. Zapletal.

Canonical Ramsey theory on Polish spaces, volume 202. Cambridge University Press, 2013.

-

-

A. R. D. Mathias.

Happy families. Annals of Mathematical logic, 12(1):59–111, 1977.

A. Panagiotopoulos and A. Wang.

Every CBER is smooth below the Carlson-Simpson generic partition. arXiv:2206.14224, 2022.

R. I. Soare.

Sets with no subset of higher degree. The Journal of Symbolic Logic, 34(1):53–56, 1969.

D. Sullivan, B. Weiss, and J. D. Wright.

Generic dynamics and monotone complete C*-algebras. Transactions of the American Mathematical Society, 295(2):795–809, 1986.

S. Todorčević.

Introduction to Ramsey spaces, volume 174. Princeton University Press, 2010.