Good colorings for stationary lists

Yusuke Hayashi

Kobe university

January 25, 2024

Joint work with Hiroshi Sakai

2 Flow of Komjáth's 2nd theorem

3 Our results

Background

Chromatic number

Let $X = (V_X, E_X)$ be an (undirected simple) graph.

Definition

A function f whose domain is V_X is called a coloring of X. Also, if $f(v) \neq f(w)$ holds for every $\{v, w\} \in E_X$, then f is termed a good coloring.

Definition

We define the chromatic number of X as

$$Chr(X) = \min \{ \kappa \in Card \mid \exists f : V_X \to \kappa[f \text{ is good.}] \}.$$

Let X be a bipartite graph, that is, $X = (A \sqcup B, E_X)$ such that $\{v, w\} \in E_X \rightarrow v \in A \land w \in B$. Then, $Chr(X) \leq 2$, since the following function is a good coloring:

$$f(v) = \begin{cases} 0 \text{ (if } v \in A) \\ 1 \text{ (if } v \in B) \end{cases}$$

List chromatic number

Definition

We define the list chromatic number List(X) as

 $\min \left\{ \kappa \in \mathsf{Card} \mid \forall L : V_X \to [\mathsf{On}]^{\kappa} \exists f : V_X \to \mathsf{On}[\forall v \in V_X(f(v) \in L(v)) \land f \text{ is good.}] \right\}.$

Definition

We define the restricted list chromatic number $List^*(X)$ as

 $\min\left\{\kappa \in \mathsf{Card} \mid \forall L: V_X \to [\kappa]^{\kappa} \exists f: V_X \to \kappa [\forall v \in V_X(f(v) \in L(v)) \land f \text{ is good.}]\right\}.$

Coloring number

Definition

The coloring number $\operatorname{Col}(X)$ is the least $\kappa \in \operatorname{Card}$ such that

 $\exists \text{ well order } \prec \text{ on } V_X \forall v \in V_X[|\{w \in V_X \mid w \prec v\}| < \kappa].$

$\operatorname{Chr}(X) \leq \operatorname{List}^*(X) \leq \operatorname{List}(X) \leq \operatorname{Col}(X)$

Proposition

$\mathsf{Chr}(X) \leq \mathsf{List}^*(X) \leq \mathsf{List}(X) \leq \mathsf{Col}(X)$

Proof.

 $(Chr(X) \leq List^*(X))$ Suppose that $List^*(X) \leq \kappa$ and let $L: V_X \to \{\kappa\}$ be a list function. We show that $\text{List}^*(X) \leq \kappa$. If there exists a good coloring $f: V_X \to \kappa$ such that $f(v) \in L(v) = \kappa$, then this f is a witness of $Chr(X) \leq \kappa$. $(\text{List}^*(X) < \text{List}(X))$ This is clear, since $[\kappa]^{\kappa} \subset [\text{On}]^{\kappa}$. $(\text{List}(X) \leq \text{Col}(X))$ Suppose that $\text{Col}(X) \leq \kappa$. We show that $\text{List}(X) \leq \kappa$. Let \prec be a well-ordering of V_X that is a witness of $Col(X) \leq \kappa$. Take a list function $L: V_X \to [On]^{\kappa}$. We construct a good coloring f with $f(v) \in L(v)$ by induction on (V_X, \prec) . Let $v \in V_X$ and suppose that for all $w \prec v$, f(w) is already defined. By the choice of \prec , $S = |\{f(w) \mid w \prec v\}| < \kappa$. Then we can choose $f(v) \in L(v) \setminus S \neq \emptyset$. This coloring f is good by the construction.

Komjáth's results

In [1], Komjáth investigated these characteristics. In this talk, we focus on the following two results:

Theorem(Komjáth)

It is consistent that there exists a graph X such that $List(X) \neq List^*(X)$.

Theorem(Komjáth)

Under GCH, $\operatorname{Col}(X) \leq \operatorname{List}(X)^+$ and $\operatorname{Col}(X) \leq \operatorname{List}^*(X)^{++}$ hold. (Recall:List^{*}(X) $\leq \operatorname{List}(X) \leq \operatorname{Col}(X)$)

2 Flow of Komjáth's 2nd theorem

3 Our results

Flow chart

Theorem(Komjáth, repeat)

```
Under GCH, Col(X) \leq List(X)^+ and Col(X) \leq List^*(X)^{++} hold.
```

Komjáth's 2nd theorem is proved by contraposition. For example, the first one is showed as follows.

```
Suppose that \operatorname{Col}(X) > \mu^+ and X is "minimal".

Find a bipartite subgraph Y

Obtain \operatorname{List}(Y) > \mu
```

Find a bipartite subgraph

We may assume that for every subgraph $X' \subseteq X$ with |X'| < |X|, $\operatorname{Col}(X') \le \mu^+$ (minimality). Then we can find a subgraph $Y = (A \sqcup B, E_Y)$ satisfying the following for some λ :

- $|A| = \lambda^+$,
- $|B| = \lambda$, and
- $\forall a \in A, |\{b \in B \mid \{a, b\} \in E_Y\}| \ge \mu.$

GCH result for bipartite graphs

Now, we focus on the subgraph $Y\subseteq X$ with

- $|A| = \lambda^+$,
- $\bullet \ |B| = \lambda \text{, and}$
- $\forall a \in A, |\{b \in B \mid \{a, b\} \in E_Y\}| \ge \mu.$
- In [1], Komjáth proved the following:

Lemma(Komjáth)

Under GCH, every bipartite graph satisfying the above three conditions has a list chromatic number at least $\mu^+.$

Therefore, $\operatorname{List}(Y) > \mu$, and of course, $\operatorname{List}(X) > \mu$.

Suppose that $\operatorname{Col}(X) > \mu^+$ and X is "minimal". Find a bipartite subgraph Y Obtain $\operatorname{List}(Y) > \mu$

2 Flow of Komjáth's 2nd theorem

Notations

We introduce new notations for list colorings.

Definition

For a class C, List(X, C) is the following condition:

$$\forall L: V_X \to \mathcal{C} \exists f: V_X \to \bigcup \mathcal{C} [\forall v \in V_X(f(v) \in L(v)) \land f \text{ is good.}]$$

For example, $\text{List}(X, [\text{On}]^{\kappa})$ (resp. $\text{List}(X, [\kappa]^{\kappa})$) deals with the condition of List(X) (resp. $\text{List}^*(X)$).

We are interested in the condition $\text{List}(X, \text{Stat}_{\kappa})$ for regular κ . Since $\text{Stat}_{\kappa} \subseteq [\kappa]^{\kappa}$, $\text{List}(X, [\kappa]^{\kappa}) \to \text{List}(X, \text{Stat}_{\kappa})$ holds.

Separation

Theorem(Sakai, H, repeat)

For every regular κ , there exists a graph X such that $\text{List}(X, \text{Stat}_{\kappa})$ holds, but $\text{List}(X, [\kappa]^{\kappa})$ fails.

Proof.

We show that the complete bipartite graph $X = (A \sqcup B, E_X)$ with $|A| = 2^{\kappa}$ and $|B| = \kappa$ is as desired.

 $(\operatorname{List}(X,\operatorname{Stat}_{\kappa}))$ Take $L: A \sqcup B \to \operatorname{Stat}_{\kappa}$. We can find a good coloring function f of L as follows. We may assume that $B = \kappa$. First, for $\gamma \in B$, choose $f(\gamma) \in L(\gamma) \setminus \gamma$. Then, $N = \{f(\gamma) \mid \gamma \in B\}$ is nonstationary. Thus, we can choose $f(a) \in L(a) \setminus N$ for $a \in A$. Clearly, this f is as desired.

Separation

Theorem(Sakai, H)

For every regular κ , there exists a graph X such that $\text{List}(X, \text{Stat}_{\kappa})$ holds, but $\text{List}(X, [\kappa]^{\kappa})$ fails.

Proof.

 $(\neg \mathsf{List}(X, [\kappa]^{\kappa})) \text{ Identify } A \text{ and } B \text{ with } [\kappa]^{\kappa} \text{ and } \kappa \text{, respectively. Define a list function } L: A \sqcup B \to [\kappa]^{\kappa} \text{ by } I$

$$\begin{cases} L(X) = X(\text{if } X \in A) \\ L(\gamma) = \kappa \setminus \gamma(\text{if} \gamma \in B) \end{cases}$$

Let f be a choice function of L and show that f is not good. By the definition of L, $f[B] \in [\kappa]^{\kappa} = A$. Therefore $f(f[B]) \in L(f[B]) = f[B]$ and we can take a $\gamma \in B$ with $f(\gamma) = f(f[B])$. Since X is the complete bipartite graph, $\{\gamma, f[B]\} \in E_X$, so f is not good.

Revised Komjáth's 2nd theorem

In the proof of $\operatorname{Col}(X) \leq \operatorname{List}(X)^+$, the following is a key lemma.

Lemma(Komjáth, repeat)

Under GCH, every bipartite graph satisfying the three conditions has a list chromatic number of at least $\mu^+.$

Under our notation, this can be rewritten as follows:

Lemma(Komjáth)

Under GCH, for every bipartite graph X satisfying the three conditions, ${\rm List}(X,[{\rm On}]^\mu)$ fails.

Suppose that $\operatorname{Col}(X) > \mu^+$ and X is "minimal". Find a bipartite subgraph Y U Obtain $\operatorname{List}(Y) > \mu$

Revised Komjáth's 2nd theorem

In the proof of $\operatorname{Col}(X) \leq \operatorname{List}(X)^+$, the following is a key lemma.

Lemma(Komjáth, repeat)

Under GCH, every bipartite graph satisfying the three conditions has a list chromatic number of at least μ^+ .

Under our notation, this can be rewritten as follows:

Lemma(Komjáth)

Under GCH, for every bipartite graph X satisfying the three conditions, ${\rm List}(X,[{\rm On}]^\mu)$ fails.

Suppose that $Col(X) > \mu^+$ and X is "minimal". Find a bipartite subgraph Y Obtain $\neg List(Y, [On]^{\mu})$

Our 2nd result

Theorem(Komjáth)

Under GCH, if $\operatorname{Col}(X) > \mu^+$ then $\operatorname{List}(X, [\operatorname{On}]^{\mu})$ fails for every μ .

Theorem(Sakai, H)

Under GCH, if $Col(X) > \mu^{++}$ then $List(X, Stat_{\mu})$ fails for every regular μ .

Key lemma

Theorem(Sakai, H, repeat)

Under GCH, if $Col(X) > \mu^{++}$ then $List(X, Stat_{\mu})$ fails for every regular μ .

Suppose that $\text{Col}(X) > \mu^{++}$. By the same argument of Komjáth's proof, we can find a bipartite subgraph $Y = (A \sqcup B, E_Y)$ satisfying

- $|A| = \lambda^+$,
- $\bullet \ |B|=\lambda \text{, and}$
- $\forall a \in A, |\{b \in B \mid \{a, b\} \in E_Y\}| \ge \mu^+$.

for some λ . We proved the following:

Lemma

Under GCH, for every bipartite graph X and every regular cardinal μ satisfying the above three conditions, $List(X, Stat_{\mu})$ fails.

Yusuke Hayashi (Kobe university)

Questions

Theorem(Sakai, H, repeat)

Under GCH, if $Col(X) > \mu^{++}$ then $List(X, Stat_{\mu})$ fails for every regular μ .

Question

Is the above result optimal? In other words, is it consistent with GCH that there is a graph X and a regular cardinal μ such that $Col(X) = \mu^{++}$ and $List(X, Stat_{\mu})$ holds?

Question

What about other classes? For example, for a filter on μ , for which assumptions does List(X, F) fail in general?

Reference I

[1] Péter Komjáth.

The list-chromatic number of infinite graphs. *Israel Journal of Mathematics*, 196(1):67–94, 2013.

Key lemma

Theorem(Sakai, H, repeat)

Under GCH, if $Col(X) > \mu^{++}$ then $List(X, Stat_{\mu})$ fails for every regular μ .

Suppose that $Col(X) > \mu^{++}$. By he same argument of Komjáth's proof, we can find a bipartite subgraph $Y = (A \sqcup B, E_Y)$ satisfying

- $|A| = \lambda^+$,
- $|B| = \lambda$, and
- $\forall a \in A, |\{b \in B \mid \{a, b\} \in E_Y\}| \ge \mu^+$.

for some λ . Thus, it is sufficient to show that:

Lemma

Under GCH, for every bipartite graph X and every regular cardinal μ satisfying the above three conditions, $List(X, Stat_{\mu})$ fails.

Yusuke Hayashi (Kobe university)

Good coloring of bipartite graphs for stationary lists

Lemm<u>a</u>

Under GCH, for every bipartite graph $X = (A \sqcup B, E_X)$ and every regular cardinal μ satisfying

- $|A| = \lambda^+$,
- $\bullet \ |B|=\lambda \text{, and}$
- $\forall a \in A, |\{b \in B \mid \{a, b\} \in E_X\}| \ge \mu^+$,

 $List(X, Stat_{\mu})$ fails.

Sketch of the proof

Let X be a such graph. We construct a list $L: A \sqcup B \to \operatorname{Stat}_{\mu}$ which has no good coloring function. We may assume that $B = \lambda$. By taking a subgraph of X, if necessary, we may assume that this λ is minimal with respect to the above three conditions. That is, we can assume that if there are $A' \subseteq A$, $B' \subseteq B$, and ν such that $|A| = \nu^+$, $|B| = \nu$, and $\forall a \in A', |\{b \in B' \mid \{a, b\} \in E_X\}| \ge \mu^+$, then $\nu = \lambda$.

Good coloring of bipartite graphs for stationary lists

Sketch of the proof

Thus, by the minimality of λ , $B_a = \{b \in B \mid \{a, b\} \in E_X\}$ is unbounded in λ for all $a \in A$. Also, by removing edges, we assume that B_a has size μ^+ . In other words, we may assume that $cf(\lambda) = \mu^+$ and B_a is cofinal in λ . Take a cofinal sequence $\langle \lambda_i \mid i < \mu^+ \rangle$ with $\lambda_0 = 0$. Since GCH holds, there is a \subseteq^* -sequence $\langle C_i \mid i < \mu^+ \rangle$ of clubs in μ such that

$$\forall \mathsf{club} \ C \subseteq \mu \forall^{\infty} i < \mu^+ [C_i \subseteq^* C]$$

where $S \subseteq^* S'$ means $S \setminus S'$ is bounded in μ . For $\xi \in [\lambda_i, \lambda_{i+1}) \subseteq \lambda = B$, we define $F(\xi) = C_i$. By a diagonal argument, for every $a \in A$, we can find $\gamma_a < \mu$ such that

 $\forall \mathsf{club} \ C \subseteq \mu \exists \xi \in B_a[F(\xi) \setminus (\gamma_a + 1) \subseteq C].$

Good coloring of bipartite graphs for stationary lists

Sketch of the proof.

By the pigeonhole principle, there exists a $\gamma < \mu$ such that $A' = \{a \in A \mid \gamma_a = \gamma\}$ has size λ^+ . We shrink A to A' and define the list function L as follows. For $\xi \in B$, we define $L(\xi) = F(\xi) \setminus \gamma$. Since GCH holds, we can identify A' with the set $\prod_{\xi \in B} L(\xi)$. Here, for $g \in A'$, define $L(g) = \{g(\xi) \mid \xi \in B_g\}$. This L has no good coloring function by a simple observation, so it only remains to check that L(g) is stationary. Take a club set C in μ . By the choice of γ and A', there is a $\xi \in B_g$ such that $B_g = F(\xi) \setminus (\gamma + 1) \subseteq C$. Therefore $g(\xi) \in L(g) \cap C \neq \emptyset$, so we are done.