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Background

Chromatic number

Let X = (VX , EX) be an (undirected simple) graph.

Definition

A function f whose domain is VX is called a coloring of X. Also, if f(v) ̸= f(w) holds for
every {v, w} ∈ EX , then f is termed a good coloring.

Definition

We define the chromatic number of X as

Chr(X) = min {κ ∈ Card | ∃f : VX → κ[f is good.]} .

Let X be a bipartite graph, that is, X = (A ⊔B,EX) such that
{v, w} ∈ EX → v ∈ A ∧ w ∈ B. Then, Chr(X) ≤ 2, since the following function is a good
coloring:

f(v) =

{
0 (if v ∈ A)

1 (if v ∈ B)
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Background

List chromatic number

Definition

We define the list chromatic number List(X) as

min {κ ∈ Card | ∀L : VX → [On]κ∃f : VX → On[∀v ∈ VX(f(v) ∈ L(v)) ∧ f is good.]} .

Definition

We define the restricted list chromatic number List∗(X) as

min {κ ∈ Card | ∀L : VX → [κ]κ∃f : VX → κ[∀v ∈ VX(f(v) ∈ L(v)) ∧ f is good.]} .
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Background

Coloring number

Definition

The coloring number Col(X) is the least κ ∈ Card such that

∃ well order ≺ on VX∀v ∈ VX [|{w ∈ VX | w ≺ v}| < κ].
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Background

Chr(X) ≤ List∗(X) ≤ List(X) ≤ Col(X)

Proposition

Chr(X) ≤ List∗(X) ≤ List(X) ≤ Col(X)

Proof.

(Chr(X) ≤ List∗(X)) Suppose that List∗(X) ≤ κ and let L : VX → {κ} be a list function. We
show that List∗(X) ≤ κ. If there exists a good coloring f : VX → κ such that
f(v) ∈ L(v) = κ, then this f is a witness of Chr(X) ≤ κ.
(List∗(X) ≤ List(X)) This is clear, since [κ]κ ⊆ [On]κ.
(List(X) ≤ Col(X)) Suppose that Col(X) ≤ κ. We show that List(X) ≤ κ. Let ≺ be a
well-ordering of VX that is a witness of Col(X) ≤ κ. Take a list function L : VX → [On]κ. We
construct a good coloring f with f(v) ∈ L(v) by induction on (VX ,≺). Let v ∈ VX and
suppose that for all w ≺ v, f(w) is already defined. By the choice of ≺,
S = |{f(w) | w ≺ v}| < κ. Then we can choose f(v) ∈ L(v) \ S ̸= ∅. This coloring f is good
by the construction.
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Background

Komjáth’s results

In [1], Komjáth investigated these characteristics. In this talk, we focus on the following two
results:

Theorem(Komjáth)

It is consistent that there exists a graph X such that List(X) ̸= List∗(X).

Theorem(Komjáth)

Under GCH, Col(X) ≤ List(X)+ and Col(X) ≤ List∗(X)++ hold.
(Recall:List∗(X) ≤ List(X) ≤ Col(X))
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Flow of Komjáth’s 2nd theorem

Flow chart

Theorem(Komjáth, repeat)

Under GCH, Col(X) ≤ List(X)+ and Col(X) ≤ List∗(X)++ hold.

Komjáth’s 2nd theorem is proved by contraposition. For example, the first one is showed as
follows.

Suppose that Col(X) > µ+ and X is “minimal”.

Find a bipartite subgraph Y

Obtain List(Y ) > µ
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Flow of Komjáth’s 2nd theorem

Find a bipartite subgraph

We may assume that for every subgraph
X ′ ⊆ X with |X ′| < |X|, Col(X ′) ≤ µ+

(minimality). Then we can find a subgraph
Y = (A ⊔B,EY ) satisfying the following
for some λ:

|A| = λ+,

|B| = λ, and

∀a ∈ A, |{b ∈ B | {a, b} ∈ EY }| ≥ µ.

Y =

a

λ+
λ

size ≥ µ

Suppose that Col(X) > µ+

and X is “minimal”.

Find a bipartite subgraph Y

Obtain List(Y ) > µ
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Flow of Komjáth’s 2nd theorem

GCH result for bipartite graphs

Now, we focus on the subgraph Y ⊆ X with

|A| = λ+,

|B| = λ, and

∀a ∈ A, |{b ∈ B | {a, b} ∈ EY }| ≥ µ.

In [1], Komjáth proved the following:

Lemma(Komjáth)

Under GCH, every bipartite graph satisfying
the above three conditions has a list
chromatic number at least µ+.

Therefore, List(Y ) > µ, and of course,
List(X) > µ.

Suppose that Col(X) > µ+

and X is “minimal”.

Find a bipartite subgraph Y

Obtain List(Y ) > µ
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Our results

Notations

We introduce new notations for list colorings.

Definition

For a class C, List(X, C) is the following condition:

∀L : VX → C∃f : VX →
∪

C[∀v ∈ VX(f(v) ∈ L(v)) ∧ f is good.]

For example, List(X, [On]κ) (resp. List(X, [κ]κ)) deals with the condition of List(X) (resp.
List∗(X)).
We are interested in the condition List(X, Statκ) for regular κ. Since Statκ ⊆ [κ]κ,
List(X, [κ]κ) → List(X, Statκ) holds.
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Our results

Separation

Theorem(Sakai, H, repeat)

For every regular κ, there exists a graph X such that List(X, Statκ) holds, but List(X, [κ]κ)
fails.

Proof.

We show that the complete bipartite graph X = (A ⊔B,EX) with |A| = 2κ and |B| = κ is as
desired.
(List(X, Statκ)) Take L : A ⊔B → Statκ. We can find a good coloring function f of L as
follows. We may assume that B = κ. First, for γ ∈ B, choose f(γ) ∈ L(γ) \ γ. Then,
N = {f(γ) | γ ∈ B} is nonstationary. Thus, we can choose f(a) ∈ L(a) \N for a ∈ A.
Clearly, this f is as desired.
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Our results

Separation

Theorem(Sakai, H)

For every regular κ, there exists a graph X such that List(X, Statκ) holds, but List(X, [κ]κ)
fails.

Proof.

(¬List(X, [κ]κ)) Identify A and B with [κ]κ and κ, respectively. Define a list function
L : A ⊔B → [κ]κ by {

L(X) = X(if X ∈ A)

L(γ) = κ \ γ(ifγ ∈ B)
.

Let f be a choice function of L and show that f is not good. By the definition of L,
f [B] ∈ [κ]κ = A. Therefore f(f [B]) ∈ L(f [B]) = f [B] and we can take a γ ∈ B with
f(γ) = f(f [B]). Since X is the complete bipartite graph, {γ, f [B]} ∈ EX , so f is not
good.
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Our results

Revised Komjáth’s 2nd theorem

In the proof of Col(X) ≤ List(X)+, the
following is a key lemma.

Lemma(Komjáth, repeat)

Under GCH, every bipartite graph satisfying
the three conditions has a list chromatic
number of at least µ+.

Under our notation, this can be rewritten as
follows:

Lemma(Komjáth)

Under GCH, for every bipartite graph X
satisfying the three conditions,
List(X, [On]µ) fails.

Suppose that Col(X) > µ+

and X is “minimal”.

Find a bipartite subgraph Y

Obtain List(Y ) > µ
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Our results

Revised Komjáth’s 2nd theorem

In the proof of Col(X) ≤ List(X)+, the
following is a key lemma.

Lemma(Komjáth, repeat)

Under GCH, every bipartite graph satisfying
the three conditions has a list chromatic
number of at least µ+.

Under our notation, this can be rewritten as
follows:

Lemma(Komjáth)

Under GCH, for every bipartite graph X
satisfying the three conditions,
List(X, [On]µ) fails.

Suppose that Col(X) > µ+

and X is “minimal”.

Find a bipartite subgraph Y

Obtain ¬List(Y, [On]µ)
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Our results

Our 2nd result

Theorem(Komjáth)

Under GCH, if Col(X) > µ+ then List(X, [On]µ) fails for every µ.

Theorem(Sakai, H)

Under GCH, if Col(X) > µ++ then List(X, Statµ) fails for every regular µ.
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Our results

Key lemma

Theorem(Sakai, H, repeat)

Under GCH, if Col(X) > µ++ then List(X, Statµ) fails for every regular µ.

Suppose that Col(X) > µ++. By the same argument of Komjáth’s proof, we can find a
bipartite subgraph Y = (A ⊔B,EY ) satisfying

|A| = λ+,

|B| = λ, and

∀a ∈ A, |{b ∈ B | {a, b} ∈ EY }| ≥ µ+.

for some λ. We proved the following:

Lemma

Under GCH, for every bipartite graph X and every regular cardinal µ satisfying the above
three conditions, List(X, Statµ) fails.
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Our results

Questions

Theorem(Sakai, H, repeat)

Under GCH, if Col(X) > µ++ then List(X, Statµ) fails for every regular µ.

Question

Is the above result optimal? In other words, is it consistent with GCH that there is a graph X
and a regular cardinal µ such that Col(X) = µ++ and List(X, Statµ) holds?

Question

What about other classes? For example, for a filter on µ, for which assumptions does
List(X,F ) fail in general?

Yusuke Hayashi (Kobe university) Good colorings for stationary lists
January 25, 2024 Joint work with Hiroshi Sakai

20 / 25



Our results

Reference I

[1] Péter Komjáth.
The list-chromatic number of infinite graphs.
Israel Journal of Mathematics, 196(1):67–94, 2013.
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Our results

Key lemma

Theorem(Sakai, H, repeat)

Under GCH, if Col(X) > µ++ then List(X, Statµ) fails for every regular µ.

Suppose that Col(X) > µ++. By he same argument of Komjáth’s proof, we can find a
bipartite subgraph Y = (A ⊔B,EY ) satisfying

|A| = λ+,

|B| = λ, and

∀a ∈ A, |{b ∈ B | {a, b} ∈ EY }| ≥ µ+.

for some λ. Thus, it is sufficient to show that:

Lemma

Under GCH, for every bipartite graph X and every regular cardinal µ satisfying the above
three conditions, List(X, Statµ) fails.
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Our results

Good coloring of bipartite graphs for stationary lists

Lemma

Under GCH, for every bipartite graph X = (A⊔B,EX) and every regular cardinal µ satisfying

|A| = λ+,

|B| = λ, and

∀a ∈ A, |{b ∈ B | {a, b} ∈ EX}| ≥ µ+,

List(X, Statµ) fails.

Sketch of the proof

Let X be a such graph. We construct a list L : A ⊔B → Statµ which has no good coloring
function. We may assume that B = λ. By taking a subgraph of X, if necessary, we may
assume that this λ is minimal with respect to the above three conditions. That is, we can
assume that if there are A′ ⊆ A, B′ ⊆ B, and ν such that |A| = ν+, |B| = ν, and
∀a ∈ A′, |{b ∈ B′ | {a, b} ∈ EX}| ≥ µ+, then ν = λ.
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Our results

Good coloring of bipartite graphs for stationary lists

Sketch of the proof

Thus, by the minimality of λ, Ba = {b ∈ B | {a, b} ∈ EX} is unbounded in λ for all a ∈ A.
Also, by removing edges, we assume that Ba has size µ+. In other words, we may assume that
cf(λ) = µ+ and Ba is cofinal in λ. Take a cofinal sequence ⟨λi | i < µ+⟩ with λ0 = 0.
Since GCH holds, there is a ⊆∗-sequence ⟨Ci | i < µ+⟩ of clubs in µ such that

∀club C ⊆ µ∀∞i < µ+[Ci ⊆∗ C]

where S ⊆∗ S′ means S \ S′ is bounded in µ. For ξ ∈ [λi, λi+1) ⊆ λ = B, we define
F (ξ) = Ci. By a diagonal argument, for every a ∈ A, we can find γa < µ such that

∀club C ⊆ µ∃ξ ∈ Ba[F (ξ) \ (γa + 1) ⊆ C].

Yusuke Hayashi (Kobe university) Good colorings for stationary lists
January 25, 2024 Joint work with Hiroshi Sakai

24 / 25



Our results

Good coloring of bipartite graphs for stationary lists

Sketch of the proof.

By the pigeonhole principle, there exists a γ < µ such that A′ = {a ∈ A | γa = γ} has size
λ+. We shrink A to A′ and define the list function L as follows. For ξ ∈ B, we define
L(ξ) = F (ξ) \ γ. Since GCH holds, we can identify A′ with the set

∏
ξ∈B L(ξ). Here, for

g ∈ A′, define L(g) = {g(ξ) | ξ ∈ Bg}. This L has no good coloring function by a simple
observation, so it only remains to check that L(g) is stationary.
Take a club set C in µ. By the choice of γ and A′, there is a ξ ∈ Bg such that
Bg = F (ξ) \ (γ + 1) ⊆ C. Therefore g(ξ) ∈ L(g) ∩ C ̸= ∅, so we are done.
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