On some applications of Δ -spaces and Δ_1 -spaces

JERZY KAKOL

A. MICKIEWICZ UNIVERSITY, POZNAŃ

Set Theory and Topology Hejnice, Jan. 25 – Feb. 1, 2025

< 同 > < 三 > < 三 >

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

.

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

1 Recall the following two concepts; some discussion below.

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

•

• Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

• Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

2 Definition of a Δ -set in \mathbb{R} due to Reed, van Douwen.

• Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

② Definition of a Δ-set in ℝ due to Reed, van Douwen.
③ Q-set X ⊂ ℝ: each subset of X is G_δ.

< 同 > < 三 > < 三 >

Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- **2** Definition of a Δ -set in \mathbb{R} due to Reed, van Douwen.
- Q-set $X \subset \mathbb{R}$: each subset of X is G_{δ} .
- $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_{δ} in X.

A (1) > A (2) > A

• Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- **2** Definition of a Δ -set in \mathbb{R} due to Reed, van Douwen.
- Q-set $X \subset \mathbb{R}$: each subset of X is G_{δ} .
- $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_{δ} in X.

< 同 > < 三 > < 三 >

Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- **2** Definition of a Δ -set in \mathbb{R} due to Reed, van Douwen.
- Q-set $X \subset \mathbb{R}$: each subset of X is G_{δ} .
- $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_{δ} in X.
- If X is an uncountable Q-set, then |X| < c; so under (CH) there are no uncountable Q-sets (Hausdorff).

・ロト ・ 同ト ・ ヨト ・ ヨト

• Recall the following two concepts; some discussion below.

A topological space X is a Δ -space (Δ_1 -space) if for every decreasing sequence (D_n)_n of (countable) subsets of X with $\bigcap_n D_n = \emptyset$, there is a decreasing sequence (V_n)_n of open subsets of X, $D_n \subset V_n$ for every $n \in \omega$ and $\bigcap_n V_n = \emptyset$.

- **2** Definition of a Δ -set in \mathbb{R} due to Reed, van Douwen.
- Q-set $X \subset \mathbb{R}$: each subset of X is G_{δ} .
- $X \subset \mathbb{R}$ is a λ -set if each countable subset of X is G_{δ} in X.
- If X is an uncountable Q-set, then |X| < c; so under (CH) there are no uncountable Q-sets (Hausdorff).
 (MA) ∧(~ (CH)): X ⊂ ℝ of cardinality less than c is a

Q-set (Martin-Solovay (1970), M.E. Rudin (1977)).

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▼ 少々で

.

 Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O Δ-set X has cardinality c (Przymusiński (1977)).

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O Δ-set X has cardinality c (Przymusiński (1977)).
- Whether it is consistent that there is a Δ-set which is not a Q-set seems to be still not well understood.

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O Δ-set X has cardinality c (Przymusiński (1977)).
- Whether it is consistent that there is a Δ-set which is not a Q-set seems to be still not well understood.
- Let's recall a few facts about Δ -spaces (J.K-Leiderman):

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O Δ-set X has cardinality c (Przymusiński (1977)).
- Whether it is consistent that there is a Δ-set which is not a Q-set seems to be still not well understood.
- Let's recall a few facts about Δ -spaces (J.K-Leiderman):
- Every metrizable scattered space is a Δ -space.

< 同 > < 三 > < 三 >

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O Δ-set X has cardinality c (Przymusiński (1977)).
- Whether it is consistent that there is a Δ-set which is not a Q-set seems to be still not well understood.
- Let's recall a few facts about Δ -spaces (J.K-Leiderman):
- Every metrizable scattered space is a Δ -space.
- Compact Δ -spaces are scattered but $[0, \omega_1]$ is not in Δ .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O Δ-set X has cardinality c (Przymusiński (1977)).
- Whether it is consistent that there is a Δ-set which is not a Q-set seems to be still not well understood.
- Let's recall a few facts about Δ -spaces (J.K-Leiderman):
- Every metrizable scattered space is a Δ -space.
- Compact Δ -spaces are scattered but $[0, \omega_1]$ is not in Δ .
- A compact Eberlein space is a Δ -space iff it is scattered.

- 4 同 2 4 三 2 4 三 2

- Another motivation for searching Δ₁-property follows from the fact that it extends the classical notion of λ-sets. Recall uncountable λ-sets in ZFC exist (Kuratowski), so uncountable separable metrizable Δ₁-spaces exist in ZFC.
- O No Δ-set X has cardinality c (Przymusiński (1977)).
- Whether it is consistent that there is a Δ-set which is not a Q-set seems to be still not well understood.
- Let's recall a few facts about Δ -spaces (J.K-Leiderman):
- Every metrizable scattered space is a Δ -space.
- Compact Δ -spaces are scattered but $[0, \omega_1]$ is not in Δ .
- A compact Eberlein space is a Δ -space iff it is scattered.
- Every pseudocompact Δ₁-space with countable tightness is scattered (J.K.-Kurka-Leiderman).

Image: A math a math

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

• Recall also the following important characterization:

▶ < 문 ▶ < 문 ▶</p>

- Recall also the following important characterization:
- A Tychonoff space X is a Δ-space iff C_p(X) is distinguished, i. e., the strong dual of C_p(X) is barrelled iff the strong dual of C_p(X) carries the finest locally convex topology (J.K-Leiderman).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Recall also the following important characterization:
- A Tychonoff space X is a Δ-space iff C_p(X) is distinguished, i. e., the strong dual of C_p(X) is barrelled iff the strong dual of C_p(X) carries the finest locally convex topology (J.K-Leiderman).
- This provides (with several applications) a significant connection between attractive problems from set theory related with Δ-sets, λ-sets, and Q-sets X, and their corresponding distinguished spaces C_p(X).

(日本) (日本) (日本)

3

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

A topological space X is ω-bounded if every countable subset of X is relatively compact; [0, ω₁) is ω-bounded.

A topological space X is ω-bounded if every countable subset of X is relatively compact; [0, ω₁) is ω-bounded.

2 ω -bounded \Rightarrow countably compact \Rightarrow pseudocompact.

- A topological space X is ω-bounded if every countable subset of X is relatively compact; [0, ω₁) is ω-bounded.
- **2** ω -bounded \Rightarrow countably compact \Rightarrow pseudocompact.
- X is pseudocompact if every continuous real-valued function on X is bounded.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- A topological space X is ω-bounded if every countable subset of X is relatively compact; [0, ω₁) is ω-bounded.
- **2** ω -bounded \Rightarrow countably compact \Rightarrow pseudocompact.
- X is pseudocompact if every continuous real-valued function on X is bounded.
- Every ω-bounded space X is Warner bounded, i.e. for each sequence (G_n)_n of pairwise disjoint open sets there exists compact K ⊂ X with {m ∈ ω : K ∩ G_m ≠ ∅} is infinite.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- A topological space X is ω-bounded if every countable subset of X is relatively compact; [0, ω₁) is ω-bounded.
- **2** ω -bounded \Rightarrow countably compact \Rightarrow pseudocompact.
- X is pseudocompact if every continuous real-valued function on X is bounded.
- Every ω-bounded space X is Warner bounded, i.e. for each sequence (G_n)_n of pairwise disjoint open sets there exists compact K ⊂ X with {m ∈ ω : K ∩ G_m ≠ ∅} is infinite.
- C_k(X) has a fundamental sequence of bounded sets iff X is Warner bounded (Warner).

・ 同 ト ・ ヨ ト ・ ヨ ト

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Let X be ω -bounded or Čech-complete. TFAE:

・ 同 ト ・ ヨ ト ・ ヨ

Let X be ω -bounded or Čech-complete. TFAE:

• X is scattered.

A (1) > A (2) > A

-

Let X be ω -bounded or Čech-complete. TFAE:

- X is scattered.
- **2** Every compact subset of X is scattered.

Let X be ω -bounded or Čech-complete. TFAE:

- X is scattered.
- **2** Every compact subset of X is scattered.
- X is a Δ_1 -space.

- Let X be ω -bounded or Čech-complete. TFAE:
 - X is scattered.
 - Every compact subset of X is scattered.
 - X is a Δ_1 -space.
 - Every separable Banach subspace of C_k(X) has separable dual.

- Let X be ω -bounded or Čech-complete. TFAE:
 - X is scattered.
 - Every compact subset of X is scattered.
 - X is a Δ_1 -space.
 - Every separable Banach subspace of C_k(X) has separable dual.

Theorem 2 (Kąkol–Kurek–Leiderman)

- Let X be ω -bounded or Čech-complete. TFAE:
 - X is scattered.
 - **2** Every compact subset of X is scattered.
 - X is a Δ_1 -space.
 - Every separable Banach subspace of C_k(X) has separable dual.
 - $C_k(X)$ does not contain a copy of ℓ_1 .

Theorem 2 (Kąkol–Kurek–Leiderman)

- Let X be ω -bounded or Čech-complete. TFAE:
 - X is scattered.
 - Every compact subset of X is scattered.
 - X is a Δ_1 -space.
 - Every separable Banach subspace of C_k(X) has separable dual.
 - $C_k(X)$ does not contain a copy of ℓ_1 .
 - Every continuous convex function with domain a nonempty open convex subset is Fréchet differentiable on a dense G_δ subset of its domain.

A (1) > A (2) > A

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Theorem 3 (Kakol-Kurek-Leiderman)

A pseudocompact X is a Δ_1 -space iff every countable set is scattered. If X is a Cech-complete space, then X is scattered iff X is in Δ_1 .

A (2) > (

Theorem 3 (Kąkol–Kurek–Leiderman)

A pseudocompact X is a Δ_1 -space iff every countable set is scattered. If X is a Cech-complete space, then X is scattered iff X is in Δ_1 .

Corollary 4

Let X be a compact space. The following assertions are equivalent: (i) The space X is a Δ_1 -space. (ii) The space X is scattered. (iii) The space $C_k(X)$ is an Asplund space.

▲ □ ► < □ ► </p>

Theorem 3 (Kąkol–Kurek–Leiderman)

A pseudocompact X is a Δ_1 -space iff every countable set is scattered. If X is a Cech-complete space, then X is scattered iff X is in Δ_1 .

Corollary 4

Let X be a compact space. The following assertions are equivalent: (i) The space X is a Δ_1 -space. (ii) The space X is scattered. (iii) The space $C_k(X)$ is an Asplund space.

Problem 5

Let X be a compact space. Find a "nice" property \mathcal{P} on C(X)or C(X)' under which the following statement holds true. X is a Δ -space iff C(X) is Asplund and C(X) (or C(X)') satisfies property \mathcal{P} .

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

<回> < E> < E>

æ

Theorem 6 (Kakol-Kurka)

An infinite compact space X is scattered iff there is no infinite-dimensional closed σ -compact subspace of $C_p(X)$.

A (1) > A (2) > A

Theorem 6 (Kakol-Kurka)

An infinite compact space X is scattered iff there is no infinite-dimensional closed σ -compact subspace of $C_p(X)$.

 Recall here the following two (earlier) results due to Leiderman and Tkachuk concerning Δ-spaces.

Theorem 6 (Kakol-Kurka)

An infinite compact space X is scattered iff there is no infinite-dimensional closed σ -compact subspace of $C_p(X)$.

 Recall here the following two (earlier) results due to Leiderman and Tkachuk concerning Δ-spaces.

Theorem 7 (Leiderman-Tkachuk)

If X is a pseudocompact Δ -space, then every countable subspace of X is scattered.

Theorem 6 (Kakol-Kurka)

An infinite compact space X is scattered iff there is no infinite-dimensional closed σ -compact subspace of $C_p(X)$.

 Recall here the following two (earlier) results due to Leiderman and Tkachuk concerning Δ-spaces.

Theorem 7 (Leiderman–Tkachuk)

If X is a pseudocompact Δ -space, then every countable subspace of X is scattered.

Corollary 8

Any pseudocompact Δ -space of countable tightness must be scattered.

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

• • = • • = •

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

• • = • • = •

X is crowded, if X does not admit isolated points; X is resolvable (ω-resolvable), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder).

- X is crowded, if X does not admit isolated points; X is resolvable (ω-resolvable), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder).
- El'kin and Malykhin published a number of papers on these subjects and their connections with various topological problems.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- X is crowded, if X does not admit isolated points; X is resolvable (ω-resolvable), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder).
- El'kin and Malykhin published a number of papers on these subjects and their connections with various topological problems.
- One of the problems considered by Malykhin refers to the existence of irresolvable spaces (i.e. crowded not resolvable) satisfying the Baire Category Theorem. Under L=V (i.e. every set is constructible) there is no Baire irresolvable space (Kunen-Szymański-Tall).

- X is crowded, if X does not admit isolated points; X is resolvable (ω-resolvable), if it can be partitioned into 2 (countably many) dense subsets (Hewitt, Ceder).
- El'kin and Malykhin published a number of papers on these subjects and their connections with various topological problems.
- One of the problems considered by Malykhin refers to the existence of irresolvable spaces (i.e. crowded not resolvable) satisfying the Baire Category Theorem. Under L=V (i.e. every set is constructible) there is no Baire irresolvable space (Kunen-Szymański-Tall).
- $(V=L) \Rightarrow (AC) \land (GCH).$

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

A (2) > (

Problem 9

In which spaces (hereditary) Baire property of a Δ_1 -space implies that it is scattered or has isolated points?

< 同 > < 三 > < 三 >

Problem 9

In which spaces (hereditary) Baire property of a Δ_1 -space implies that it is scattered or has isolated points?

 Crowded regular countably compact spaces are ω-resolvable (Comfort). Compact Δ-spaces are scattered!

Problem 9

In which spaces (hereditary) Baire property of a Δ_1 -space implies that it is scattered or has isolated points?

 Crowded regular countably compact spaces are ω-resolvable (Comfort). Compact Δ-spaces are scattered!

Proposition 10 (Szeptycki-Leiderman)

If X is Baire ω -resolvable, then X is not a Δ -space. Hence, a Lindelöf Baire space which is a Δ -space has isolated points.

Problem 9

In which spaces (hereditary) Baire property of a Δ_1 -space implies that it is scattered or has isolated points?

 Crowded regular countably compact spaces are ω-resolvable (Comfort). Compact Δ-spaces are scattered!

Proposition 10 (Szeptycki-Leiderman)

If X is Baire ω -resolvable, then X is not a Δ -space. Hence, a Lindelöf Baire space which is a Δ -space has isolated points.

 Next fact was obtained as a step in the proof that a Δ-space pseudocompact of countable tightness is scattered.

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Any pseudocompact crowded space of countable tightness must be ω -resolvable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Any pseudocompact crowded space of countable tightness must be ω -resolvable.

• First note the following result dealing with Δ -spaces.

A (1) > A (2) > A

Any pseudocompact crowded space of countable tightness must be ω -resolvable.

• First note the following result dealing with Δ -spaces.

Corollary 12 (Leiderman–Tkachuk)

Every pseudocompact Δ -space X with $c(X) = \omega$ is separable and has a dense set of isolated points.

Any pseudocompact crowded space of countable tightness must be ω -resolvable.

• First note the following result dealing with Δ -spaces.

Corollary 12 (Leiderman–Tkachuk)

Every pseudocompact Δ -space X with $c(X) = \omega$ is separable and has a dense set of isolated points.

Problem 13 (Leiderman-Szeptycki)

Does every Baire Δ -space have an isolated point?

A (1) > (1) > (1)

Any pseudocompact crowded space of countable tightness must be ω -resolvable.

• First note the following result dealing with Δ -spaces.

Corollary 12 (Leiderman–Tkachuk)

Every pseudocompact Δ -space X with $c(X) = \omega$ is separable and has a dense set of isolated points.

Problem 13 (Leiderman-Szeptycki)

Does every Baire Δ -space have an isolated point?

Consider some cases for which this problem has a positive answer.

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Under Souslin hypothesis (SH) (i.e. there are no Souslin lines) if X is crowded and Baire with c(X) = ω, then X is ω-resolvable (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar) (Recall that (MA) ∧ (~ (CH)) ⇒ (SH).)

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

Under Souslin hypothesis (SH) (i.e. there are no Souslin lines) if X is crowded and Baire with c(X) = ω, then X is ω-resolvable (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar) (Recall that (MA) ∧ (~ (CH)) ⇒ (SH).)

Corollary 14

(SH) If X is a Baire space with $c(X) = \omega$ and X is a Δ -space, then X has isolated points.

Under Souslin hypothesis (SH) (i.e. there are no Souslin lines) if X is crowded and Baire with c(X) = ω, then X is ω-resolvable (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar) (Recall that (MA) ∧ (~ (CH)) ⇒ (SH).)

Corollary 14

(SH) If X is a Baire space with $c(X) = \omega$ and X is a Δ -space, then X has isolated points.

 The axiom of constructibility, V = L, implies that every Baire space without isolated points is ω-resolvable (Pavlov). Hence (under V = L) every Δ-space which is Baire has isolated points.

(日) (同) (三) (三)

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

 (under (MA)) the following statement holds (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar): Crowded X is ω-resolvable if it satisfies one of the following properties *P*:

- (under (MA)) the following statement holds

 (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar): Crowded X is ω-resolvable if it satisfies one of the following properties P:
- **2** X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- (under (MA)) the following statement holds (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar): Crowded X is ω-resolvable if it satisfies one of the following properties *P*:
- **2** X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

3

- (under (MA)) the following statement holds

 (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar): Crowded X is ω-resolvable if it satisfies one of the following properties P:
- **2** X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.
- X is a Baire space and $c(X) = \omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- (under (MA)) the following statement holds

 (Casarrubias-Segura, Hernandez-Hernandez, Tamaris-Mascar): Crowded X is ω-resolvable if it
 satisfies one of the following properties P:
- **2** X contains a π -network $|\mathcal{U}| < \mathfrak{c}$ of infinite sets.
- X is a Baire space and $c(X) = \omega$.

Corollary 15

(MA) If X is a Baire space which is a Δ -space and that satisfies one of the mentioned above properties \mathcal{P} , then X has isolated points.

・ロト ・ 同ト ・ ヨト ・ ヨト

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

 By Casarrubias it follows that every crowded Baire topological space with countable tightness is ω-resolvable.

・ 同 ト ・ ヨ ト ・ ヨ ト

 By Casarrubias it follows that every crowded Baire topological space with countable tightness is ω-resolvable.

・ 同 ト ・ ヨ ト ・ ヨ ト

- By Casarrubias it follows that every crowded Baire topological space with countable tightness is *w*-resolvable.
- Every crowded regular countably compact space is ω-resolvable (Comfort). This implies interesting:

< 同 > < 三 > < 三 >

- By Casarrubias it follows that every crowded Baire topological space with countable tightness is ω-resolvable.
- Every crowded regular countably compact space is ω-resolvable (Comfort). This implies interesting:

Example 16

There exist crowded countably compact Δ_1 -spaces not Δ -spaces which are ω -resolvable.

< 同 > < 三 > < 三 >

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

 This shows that extending Proposition 10 to Δ₁-spaces requires some extra assumption on a Baire space X.

• 3 >

< A > < 3

э

- This shows that extending Proposition 10 to Δ_1 -spaces requires some extra assumption on a Baire space X.
- Recall every ω-bounded space is countably compact and every ω-bounded space that is a Δ₁-space is scattered.

- This shows that extending Proposition 10 to Δ_1 -spaces requires some extra assumption on a Baire space X.
- Recall every ω-bounded space is countably compact and every ω-bounded space that is a Δ₁-space is scattered.

Problem 17 (J.K.-Leiderman-Tkachuk)

Does every metrizable Baire with the Δ_1 -property have an isolated point?

- This shows that extending Proposition 10 to Δ₁-spaces requires some extra assumption on a Baire space X.
- Recall every ω-bounded space is countably compact and every ω-bounded space that is a Δ₁-space is scattered.

Problem 17 (J.K.-Leiderman-Tkachuk)

Does every metrizable Baire with the Δ_1 -property have an isolated point?

 Dealing with Δ₁-spaces we propose the following extension of Proposition 10 as follows.

Theorem 18 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a Δ_1 -space. Hence, a separable Baire space which is a Δ_1 -space has isolated points.

- This shows that extending Proposition 10 to Δ₁-spaces requires some extra assumption on a Baire space X.
- Recall every ω-bounded space is countably compact and every ω-bounded space that is a Δ₁-space is scattered.

Problem 17 (J.K.-Leiderman-Tkachuk)

Does every metrizable Baire with the Δ_1 -property have an isolated point?

 Dealing with Δ₁-spaces we propose the following extension of Proposition 10 as follows.

Theorem 18 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a Δ_1 -space. Hence, a separable Baire space which is a Δ_1 -space has isolated points.

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

 Nevertheless, it turns out that even separable countably compact Δ₁-spaces need not be scattered!

- Nevertheless, it turns out that even separable countably compact Δ₁-spaces need not be scattered!
- Indeed, Juhasz and van Mill showed that there exists a dense countably compact subspace $Z \subset \beta \omega \setminus \omega$ in which all countable subsets are scattered and hence Z is a Δ_1 -space.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Nevertheless, it turns out that even separable countably compact Δ₁-spaces need not be scattered!
- Indeed, Juhasz and van Mill showed that there exists a dense countably compact subspace $Z \subset \beta \omega \setminus \omega$ in which all countable subsets are scattered and hence Z is a Δ_1 -space.
- If $X = \omega \cup Z$, then X is a countably compact separable Δ_1 -space not scattered. (J.K.-Leiderman-Tkachuk)

・ 同 ト ・ ヨ ト ・ ヨ ト

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

 It is known that X is a Δ-space iff every f ∈ ℝ^X belongs to the closure of a pointwise bounded subset of C_p(X) (J.K-Leiderman).

< 同 > < 三 > < 三 >

- It is known that X is a Δ-space iff every f ∈ ℝ^X belongs to the closure of a pointwise bounded subset of C_p(X) (J.K-Leiderman).
- It turns out that an analogous characterization can be established for the Δ₁-property.

< 同 > < 三 > <

- It is known that X is a Δ-space iff every f ∈ ℝ^X belongs to the closure of a pointwise bounded subset of C_p(X) (J.K-Leiderman).
- It turns out that an analogous characterization can be established for the Δ₁-property.

Theorem 19 (J.K.-Leiderman-Tkachuk)

A space X is a Δ_1 -space iff, for any function $f \in \mathbb{R}^X$ such that $f^{-1}(\mathbb{R} \setminus \{0\})$ is countable, there exists a bounded set $B \subset C_p(X)$ such that $f \in \overline{B}$.

< 同 > < 三 > <

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

• We have also the following

JERZY KAKOL On some applications of Δ -spaces and Δ_1 -spaces

(日) (日)

< 三→

臣

We have also the following

Theorem 20 (J.K.-Leiderman-Tkachuk)

If X has countable pseudocharacter, then X is a Δ_1 -space iff for any function $f \in \mathbb{R}^X$ such that $f^{-1}(\mathbb{R} \setminus \{0\})$ is countable, there exists a sequence $\{f_n : n \in \omega\} \subset C_p(X)$ that converges to f.

We have also the following

Theorem 20 (J.K.-Leiderman-Tkachuk)

If X has countable pseudocharacter, then X is a Δ_1 -space iff for any function $f \in \mathbb{R}^X$ such that $f^{-1}(\mathbb{R} \setminus \{0\})$ is countable, there exists a sequence $\{f_n : n \in \omega\} \subset C_p(X)$ that converges to f.

Corollary 21

All elements of the \sum -product $\Sigma(\mathbb{R}^X)$ are functions of the first Baire class iff X is a Δ_1 -space.

A (B) > (A) = (A) (A)