A Small, Unruly Radon-Nikodym Compact Space

Adam Morawski

Joint work with Arturo Martinez-Celis

Radon-Nikodym Property

A Banach space *B* has the Radon-Nikodym property (RNP) if the Radon-Nikodym theorem is true for vector measures with values in *B*.

Radon-Nikodym compacts

Radon-Nikodym Property

A Banach space *B* has the Radon-Nikodym property (RNP) if the Radon-Nikodym theorem is true for vector measures with values in *B*.

Radon-Nikodym compact space

Space *K* is called RN-compact if it is a weak*-compact subspace of some dual Banach space having RNP.

Radon-Nikodym compacts

Radon-Nikodym Property

A Banach space *B* has the Radon-Nikodym property (RNP) if the Radon-Nikodym theorem is true for vector measures with values in *B*.

Radon-Nikodym compact space

Space *K* is called RN-compact if it is a weak*-compact subspace of some dual Banach space having RNP.

Theorem (Orihuela, Schachermayer, Valdivia 1991)

Compact Hausdorff space is Eberlein iff it is RN and Corson.

Is the class of RN-compact spaces closed under continuous images?

Is the class of RN-compact spaces closed under continuous images?

Theorem (Avilés 2005)

A continuous image of an RN-compact space of weight $<\mathfrak{b}$ is RN-compact.

Weight of a space X (or w(X)) is the smallest size of a basis of X.

Is the class of RN-compact spaces closed under continuous images?

Theorem (Avilés 2005)

A continuous image of an RN-compact space of weight $<\mathfrak{b}$ is RN-compact.

Theorem (Avilés and Koszmider 2013)

There is an RN-compact space with a continuous image which is not RN-compact.

Is the class of RN-compact spaces closed under continuous images?

Theorem (Avilés 2005)

A continuous image of an RN-compact space of weight $<\mathfrak{b}$ is RN-compact.

Theorem (Avilés and Koszmider 2013)

There is an RN-compact space with a continuous image which is not RN-compact. It has weight \mathfrak{c} .

Question (Avilés and Koszmider 2013)

Consistently, can there be an RN-compact space of weight $< \ensuremath{\mathfrak{c}}$ with a continuous image which is not RN-compact?

Question (Avilés and Koszmider 2013)

Consistently, can there be an RN-compact space of weight $< \ensuremath{\mathfrak{c}}$ with a continuous image which is not RN-compact?

Theorem

There is such RN-compact space of weight ω_1 in many models with $non(\mathcal{M}) = \omega_1$.

Question (Avilés and Koszmider 2013)

Consistently, can there be an RN-compact space of weight $< \ensuremath{\mathfrak{c}}$ with a continuous image which is not RN-compact?

Theorem

There is such RN-compact space of weight ω_1 in many models with non $(\mathcal{M}) = \omega_1$. More precisely, under $\Diamond(non(\mathcal{M}))$ which is true e.g. in Cohen, Sacks and Miller models where $\mathfrak{c} = \omega_2$. Fix infinite $A = \bigcup_{t \in 2^{<\omega}} A_t$ and B and $\langle C_b : b \in B \rangle$ with

each C_b is a countable subset of A,

▶
$$C_b \cap C_{b'}$$
 is finite for $b \neq b'$.

Fix infinite $A = \bigcup_{t \in 2^{<\omega}} A_t$ and B and $\langle C_b : b \in B \rangle$ with • each C_b is a countable subset of A, • $C_b \cap C_{b'}$ is finite for $b \neq b'$. Furthermore there is a function $D : B \to \omega^{2^{<\omega}}$ st given $s : A \to \omega$ there is $b \in B$ for which (*) $\{a \in C_b \cap A_t : s(a) = D(b)(t)\}$ is infinite for each t Fix infinite $A = \bigcup_{t \in 2^{<\omega}} A_t$ and B and $\langle C_b : b \in B \rangle$ with • each C_b is a countable subset of A, • $C_b \cap C_{b'}$ is finite for $b \neq b'$. Furthermore there is a function $D : B \to \omega^{2^{<\omega}}$ st given $s : A \to \omega$ there is $b \in B$ for which (*) $\{a \in C_b \cap A_t : s(a) = D(b)(t)\}$ is infinite for each t from infinitely many levels of $2^{<\omega}$.

Preliminary space

$$K = A \cup B \cup \{c\}$$
 where

► A is discrete,

- $K = A \cup B \cup \{c\}$ where
 - A is discrete,
 - ▶ the basis of neighbourhoods of $b \in B$ is given by $\{\{b\} \cup (C_b \setminus F) : F \text{ finite}\},\$

- $K = A \cup B \cup \{c\}$ where
 - A is discrete,
 - ▶ the basis of neighbourhoods of $b \in B$ is given by $\{\{b\} \cup (C_b \setminus F) : F \text{ finite}\},\$

• *K* is a compactification of $A \cup B$.

1.
$$L_0 = (A \times 2^{\omega}) \cup B \cup \{c\}.$$

1.
$$L_0 = (A \times 2^{\omega}) \cup B \cup \{c\}.$$

2. L is a subset of $L_0 \times (2^{\omega})^B$ in a specific way with

- ▶ $x \in (A \times 2^{\omega}) \cup \{c\}$ gives a unique point in L,
- ▶ $x \in B$ gives a unique function f in $(2^{\omega})^{B \setminus \{x\}}$ and $\langle x, g \rangle \in \mathbb{L}$ iff g agrees with f.

This \mathbbm{L} is RN-compact.

1.
$$L_0 = (A \times 2^{\omega}) \cup B \cup \{c\}.$$

2. L is a subset of $L_0 \times (2^{\omega})^B$ in a specific way with

- ▶ $x \in (A \times 2^{\omega}) \cup \{c\}$ gives a unique point in L,
- ▶ $x \in B$ gives a unique function f in $(2^{\omega})^{B \setminus \{x\}}$ and $\langle x, g \rangle \in \mathbb{L}$ iff g agrees with f.

This \mathbb{L} is RN-compact.

3. Image of \mathbb{L} through a function sending $(2^{\omega})^{\beta}$ to $[0, 1]^{\beta}$ by binary evaluation on each coordinate, is not RN-compact.

More details in [Avilés and Koszmider 2013].

1.
$$L_0 = (A \times 2^{\omega}) \cup B \cup \{c\}.$$

2. L is a subset of $L_0 \times (2^{\omega})^B$ in a specific way with

- ▶ $x \in (A \times 2^{\omega}) \cup \{c\}$ gives a unique point in L,
- ▶ $x \in B$ gives a unique function f in $(2^{\omega})^{B \setminus \{x\}}$ and $\langle x, g \rangle \in \mathbb{L}$ iff g agrees with f.

This \mathbb{L} is RN-compact.

3. Image of \mathbb{L} through a function sending $(2^{\omega})^{B}$ to $[0, 1]^{B}$ by binary evaluation on each coordinate, is not RN-compact.

More details in [Avilés and Koszmider 2013].

Fact
$$w(\mathbb{L}) = w(K) = |A \cup B|.$$

Recall

 $\langle C_b : b \in B \rangle \subset \mathcal{P}(A)$ is an AD family. There is a function $D : B \to \omega^{2^{<\omega}}$ st

 $\begin{array}{l} \text{given } s: A \to \omega \text{ there is } b \in B \text{ for which} \\ (\star) \quad \{a \in C_b \cap A_t : s(a) = D(b)(t)\} \text{ is infinite} \\ \text{for each } t \text{ from infinitely many levels of } 2^{<\omega}. \end{array}$

We will say that such *b* is a (\star) -witness for *s*.

Recall

 $\langle C_b : b \in B \rangle \subset \mathcal{P}(A)$ is an AD family. There is a function $D : B \to \omega^{2^{<\omega}}$ st

 $\begin{array}{l} \text{given } s: A \to \omega \text{ there is } b \in B \text{ for which} \\ (\star) \quad \{a \in C_b \cap A_t : s(a) = D(b)(t)\} \text{ is infinite} \\ \text{for each } t \text{ from infinitely many levels of } 2^{<\omega}. \end{array}$

We will say that such *b* is a (\star) -witness for *s*.

In our construction, each $A_t \cong \omega_1$ and $B = \text{Lim}(\omega_1)$. We fix a function D and $\Delta : B \to \omega^{(2^{<\omega}) \times \omega}$. We construct $\langle C_{\alpha} : \alpha \in \text{Lim}(\omega_1) \rangle$ with $C_{\alpha} \subseteq \alpha$.

For
$$\alpha = \delta + \omega$$
, let $C_{\alpha} = [\delta, \alpha)$.

We construct $\langle C_{\alpha} : \alpha \in \text{Lim}(\omega_1) \rangle$ with $C_{\alpha} \subseteq \alpha$.

• For
$$\alpha = \delta + \omega$$
, let $C_{\alpha} = [\delta, \alpha)$.

For $\alpha \in \text{Lim}(\text{Lim}(\omega_1))$, let C'_n be an enumeration of $C_{<\alpha}$ and

$$C_n = C'_n \setminus \bigcup_{k < n} C'_k.$$

Fix a bijective $e_{\alpha} : \alpha \to \omega$. Let

$$C_{\alpha} = \{ a \in A_t \cap C_n : n \in \omega, t \in 2^{\leq n}, e(a) \leq \Delta(\alpha)(t, n) \}.$$

We construct $\langle C_{\alpha} : \alpha \in \text{Lim}(\omega_1) \rangle$ with $C_{\alpha} \subseteq \alpha$.

For
$$\alpha = \delta + \omega$$
, let $C_{\alpha} = [\delta, \alpha)$.

For $\alpha \in \text{Lim}(\text{Lim}(\omega_1))$, let C'_n be an enumeration of $C_{<\alpha}$ and

$$C_n = C'_n \setminus \bigcup_{k < n} C'_k.$$

Fix a bijective $e_{\alpha} : \alpha \to \omega$. Let

$$C_{\alpha} = \{ a \in A_t \cap C_n : n \in \omega, t \in 2^{\leq n}, e(a) \leq \Delta(\alpha)(t, n) \}.$$

Observation

If, for *t*'s forming ∞ -many levels of $2^{<\omega}$ for ∞ -many n $\Delta(\alpha)(t, n)$ is larger than some (e_{α} -image of) $a \in C_n \cap A_t$ with $s(a) = D(\alpha)(t)$, then α is a (*)-witness for *s*.

Relational systems and their evaluations

(A, B, R) with $R \subseteq A \times B$ is called a relational system.

$$\mathfrak{d}(A, B, R) = \min\{\mathcal{B} : \mathcal{B} \subseteq B, \forall_{a \in A} \exists_{b \in \mathcal{B}} aRb\}$$

Relational systems and their evaluations

(A, B, R) with $R \subseteq A \times B$ is called a relational system.

$$\mathfrak{d}(A, B, R) = \min\{\mathcal{B} : \mathcal{B} \subseteq B, \forall_{a \in A} \exists_{b \in \mathcal{B}} aRb\}$$

Examples

Diamonds

Diamonds

There is $\Delta: \omega_1 \to 2^{<\omega_1}$ so that for any $\delta \in 2^{\omega_1}$ the set

 $\{\alpha < \omega_1 : \delta \mid_{\alpha} = \Delta(\alpha)\}$ is Stationary.

⟨*A*, *B*, *R*⟩ [Moore, Hrušák, and Džamonja 2004]

For any (sufficiently definable) $F : 2^{<\omega_1} \to A$, there is $\Delta : \omega_1 \to B$ so that for any $\delta \in 2^{\omega_1}$ the set

 $\{\alpha < \omega_1 : F(\delta \upharpoonright_{\alpha}) R \Delta(\alpha)\}$ is Stationary.

Diamonds

$$\diamond$$

There is $\Delta: \omega_1 \to 2^{<\omega_1}$ so that for any $\delta \in 2^{\omega_1}$ the set

 $\{\alpha < \omega_1 : \delta \mid_{\alpha} = \Delta(\alpha)\}$ is Stationary.

⟨*A*, *B*, *R*⟩ [Moore, Hrušák, and Džamonja 2004]

For any (sufficiently definable) $F : 2^{<\omega_1} \to A$, there is $\Delta : \omega_1 \to B$ so that for any $\delta \in 2^{\omega_1}$ the set

 $\{\alpha < \omega_1 : F(\delta \upharpoonright_{\alpha}) R \Delta(\alpha)\}$ is Stationary.

 $\Diamond(A, B, R) \implies \mathfrak{d}(A, B, R) \leq \omega_1$ in many classical models the converse is also true.

$\Diamond(\mathsf{non}(\mathcal{M}))$ on a slightly peculiar space

For any
$$F: 2^{<\omega_1} \to \mathcal{M}(\omega^{2^{<\omega}} \times \omega^{2^{<\omega} \times \omega})$$
, there are $D: \omega_1 \to \omega^{2^{<\omega}}$ and $\Delta: \omega_1 \to \omega^{2^{<\omega} \times \omega}$ so that for any $\delta \in 2^{\omega_1}$ the set

 $\{\alpha < \omega_1 : F(\delta \upharpoonright_{\alpha}) \not\supseteq (D(\alpha), \Delta(\alpha))\}$ is Stationary.

$\Diamond(\mathsf{non}(\mathcal{M}))$ on a slightly peculiar space

For any $F: 2^{<\omega_1} \to \mathcal{M}(\omega^{2^{<\omega}} \times \omega^{2^{<\omega} \times \omega})$, there are $D: \omega_1 \to \omega^{2^{<\omega}}$ and $\Delta: \omega_1 \to \omega^{2^{<\omega} \times \omega}$ so that for any $\delta \in 2^{\omega_1}$ the set

 $\{\alpha < \omega_1 : F(\delta \upharpoonright_{\alpha}) \not\ni (D(\alpha), \Delta(\alpha))\}$ is Stationary.

Let $\gamma \in 2^{\alpha}$ encode $\langle C_{\delta} : \delta \in \text{Lim}(\alpha) \rangle$ and $s : A \cap \alpha \to \omega$. Let C_n as before – disjoint, enumerated version of C_{δ} .

$\Diamond(\mathsf{non}(\mathcal{M}))$ on a slightly peculiar space

For any
$$F: 2^{<\omega_1} \to \mathcal{M}(\omega^{2^{<\omega}} \times \omega^{2^{<\omega} \times \omega})$$
, there are $D: \omega_1 \to \omega^{2^{<\omega}}$ and $\Delta: \omega_1 \to \omega^{2^{<\omega} \times \omega}$ so that for any $\delta \in 2^{\omega_1}$ the set

$$\{\alpha < \omega_1 : F(\delta \upharpoonright_{\alpha}) \not\supseteq (D(\alpha), \Delta(\alpha))\}$$
 is Stationary.

Let $\gamma \in 2^{\alpha}$ encode $\langle C_{\delta} : \delta \in \text{Lim}(\alpha) \rangle$ and $s : A \cap \alpha \to \omega$. Let C_n as before – disjoint, enumerated version of C_{δ} .

$$F(\delta) = \{ \langle x, y \rangle \in \omega^{2^{<\omega}} \times \omega^{2^{<\omega} \times \omega} : \\ \forall_{I}^{\infty} \exists_{t \in 2^{I}} \forall_{n}^{\infty} \forall_{a \in A_{t} \cap C_{n}} s(a) \neq x(t) \text{ or } y(t, n) < e_{\alpha}(a) \}$$

Thank you!

Radon in Vienna

Nikodym in Kraków

Avilés, Antonio (2005). "Radon-Nikodým compact spaces of low weight and Banach spaces". In: *Studia Math.* 166.1.
Avilés, Antonio and Piotr Koszmider (2013). "A continuous image of a Radon-Nikodym compact space which is not Radon-Nikodym". In: *Duke Math. J.* 162.12.
Moore, Justin Tatch, Michael Hrušák, and Mirna Džamonja (2004). "Parametrized \$\lapha\$ principles". In: *Trans. Amer. Math. Soc.* 356.6.