Rearrangement & Subseries numbers

Tristan van der Vlugt (TU Wien)

Winter School 2025 Hejnice, Czech Republic

January 27, 2025

Infinite series

Given a sequence $a = \langle a_n \mid n \in \omega \rangle \in {}^{\omega}\mathbf{R}$ with $\lim_{n \to \infty} a_n = 0$, we may consider the infinite series $\sum a = \sum_{n \in \omega} a_n$ and the sequence of partial sums $\langle P_n \mid n \in \omega \rangle$, where $P_n = \sum_{k \leq n} a_n$. It is possible that $\lim_{n \to \infty} P_n$ is equal to a real number, called its limit, in which case we say $\sum a$ converges. If $\sum_{n \in \omega} |a_n|$ converges, then $\sum a$ is absolutely convergent, or else, $\sum a$ is conditionally convergent.

Otherwise $\sum a$ diverges. Either $\lim_{n\to\infty} P_n$ equals ∞ or $-\infty$, in which case $\sum a$ tends to infinity, or $\langle P_n \mid n \in \omega \rangle$ has multiple accumulation points, in which case $\sum a$ oscillates.

Let S_{ω} be the set of permutations (= bijections) $\pi : \omega \to \omega$, and for $\pi \in S_{\omega}$ we will write $\sum a_{\pi} = \sum_{n \in \omega} a_{\pi(n)}$.

Theorem Riemann

If $\sum a$ is conditionally convergent and $r \in \mathbf{R}$, then

- $\circ\;$ there is $\pi\in\mathcal{S}_{\omega}$ s.t. $\sumoldsymbol{a}_{\pi}=r$,
- $\circ\;$ there is $ho\in\mathcal{S}_{\omega}$ s.t. $\sum oldsymbol{a}_{
 ho}$ tends to (\pm) infinity,
- $\circ\;$ there is $\sigma\in\mathcal{S}_{\omega}$ s.t. $\sum a_{\sigma}$ diverges by oscillation

In 2015, Michael Hardy asked on *MathOverflow*: How large does a subset $C \subseteq S_{\omega}$ have to be, such that for every conditionally convergent $\sum a$ there exists some $\pi \in C$ for which $\sum a_{\pi}$ does not converge to the same value as $\sum a$? The answer turns out to be quite interesting, and became subject of a paper by Blass, Brendle, Brian, Hamkins, Hardy, and Larson (2019).

To spoil the answer to Hardy's original question:

$$\max\left\{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\right\} \le \mathfrak{rr} \le \operatorname{non}(\mathcal{M}),$$

where the *rearrangement number* \mathfrak{rr} is the least cardinality of such C.

Let $[\omega]^{\omega}$ be the set of infinite subsets of ω , and for $X \in [\omega]^{\omega}$ we will write $\sum_{X} a = \sum_{n \in X} a_n$ (ordered in the natural order X inherits from ω).

Theorem

If $\sum a$ is conditionally convergent and $r \in \mathbf{R}$, then

- $\circ\;$ there is $X\in [\omega]^{\omega}$ s.t. $\sum_X a=r$,
- $\circ\;$ there is $Y\in [\omega]^{\omega}$ s.t. $\sum_Y a$ tends to (\pm) infinity,
- $\circ~$ there is $Z\in [\omega]^{\omega}$ s.t. $\sum_{Z}a$ diverges by oscillation

Two months after Hardy's question, Rahman Mohammadpour asked on *MathOverflow* whether weakening "permutations" to "injections" in the definition of rr results in a consistently different cardinal characteristic.

The answer became subject to another paper by Brendle, Brian, and Hamkins (2019).

Let \mathfrak{F} be the least size of a family $D \subseteq [\omega]^{\omega}$ such that for every conditionally convergent $\sum a$ there exists some $X \in D$ such that $\sum_X a$ diverges. We have

$$\max\left\{\mathfrak{s}, \operatorname{cov}(\mathcal{N})\right\} \le \mathfrak{g} \le \operatorname{non}(\mathcal{M}).$$

The answer to Mohammadpour's original question is the subrearrangement number \mathfrak{sr} , and $\mathfrak{sr} = \min \{\mathfrak{g}, \mathfrak{rr}\}$.

In the original paper, the authors used the symbol ß for the subseries number. This letter, the *Eszett* of the German language, commonly replaces "ss".

But cardinal characteristics are usually displayed using fraktur script! So what do we do?

- 1. Import the package yfonts,
- 2. Now we have a fraktur medial s at our disposal: f
- 3. Glue it together with the fraktur \mathfrak{z}
- 4. Subseries number: §.

We will define the following convergence behaviours:

- *f* "converges to a different limit"
- *i* "tends to infinity"
- o "oscillates"

For Γ a set of convergence behaviours, we can define a rearrangement number \mathfrak{rr}_{Γ} as the least cardinality of a set $C \subseteq S_{\omega}$ such that for every CC $\sum a$ there exists $\pi \in C$ such that $\sum a_{\pi}$ behaves according to one of the elements of Γ . For instance, the original \mathfrak{rr} is equal to $\mathfrak{rr}_{f,i,o}$. We observe:

No.

Let $\pi \in S_{\omega}$, then we call $\tau_{\pi} \in S_{\omega}$ a *mixing* of π with the identity if $\tau_{\pi}[n] = \pi[n]$ for infinitely many n, and $\tau_{\pi}[k] = k$ for infinitely many k.

Theorem Blass, Brendle, Brian, Hamkins, Hardy, and Larson 2019

 $\mathfrak{rr}_{f,i,o} = \mathfrak{rr}_{f,o} = \mathfrak{rr}_{i,o} = \mathfrak{rr}_{o}.$

Proof. It suffices to show $\mathfrak{rr}_o \leq \mathfrak{rr}_{f,i,o}$.

Let $C \subseteq S_{\omega}$ witness $\mathfrak{rr}_{f,i,o}$ and $\sum a = r$ be CC. If there is $\pi \in C$ such that $\sum a_{\pi} = r' \in \mathbf{R} \cup \{\infty, -\infty\}$ and $r' \neq r$, then $\sum a_{\tau_{\pi}}$ has both r and r' as accumulation points, and thus oscillates. Therefore $C \cup C'$, where $C' = \{\tau_{\pi} \mid \pi \in S_{\omega}\}$, witnesses \mathfrak{rr}_{o} . A relational system is a triple $\mathscr{R} = \langle R, X, Y \rangle$ where $R \subseteq X \times Y$. We call X the set of *challenges* and Y the set of *responses*. A response y meets the challenge x if x R y.

We define two cardinal characteristics:

 $\mathfrak{D}(R, X, Y) = \min \{ |D| \mid D \subseteq Y \text{ and } \forall x \in X \exists y \in D(x \ R \ y) \}$ $\mathfrak{B}(R, X, Y) = \min \{ |B| \mid B \subseteq X \text{ and } \forall y \in Y \exists x \in B(x \ \mathcal{R} \ y) \}$

Note that $\mathfrak{B}(R, X, Y) = \mathfrak{D}(\mathbb{R}^{-1}, Y, X)$. Thus, $\mathscr{R}^{\perp} = \langle \mathbb{R}^{-1}, Y, X \rangle$ is called the *dual* relational system of $\mathscr{R} = \langle R, X, Y \rangle$.

If $\mathscr{R} = \langle R, X, Y \rangle$ and $\mathscr{S} = \langle S, A, B \rangle$ are relational systems, then a *Tukey connection* is a pair of maps $\rho_- : X \to A$ and $\rho_+ : B \to Y$ such that for any $x \in X$ and $b \in B$ for which $\rho_-(x) \ S \ b$ holds, also $x \ R \ \rho_+(b)$ holds. If a Tukey connection from \mathscr{R} to \mathscr{S} exists, we write this as $\mathscr{R} \preceq \mathscr{S}$.

Lemma

$$\mathscr{R} \preceq \mathscr{S} \text{ implies} \begin{cases} \mathfrak{D}(R, X, Y) \leq \mathfrak{D}(S, A, B), & \text{and} \\ \mathfrak{B}(R, X, Y) \geq \mathfrak{B}(S, A, B). \end{cases}$$

Let us define some more convergence behaviours:

- c "converges"
- ac "converges absolutely"
- cc "converges conditionally"

For Γ a set of convergence behaviours, define \mathfrak{S}_{Γ} as the set of $a \in {}^{\omega}\mathbf{R}$ such that $\sum a$ behaves according to an element of Γ . Let $R_{\Gamma} \subseteq \mathfrak{S}_{cc} \times \mathcal{S}_{\omega}$ be the relation defined by $a R_{\Gamma} \pi$ if and only if $a_{\pi} \in \mathfrak{S}_{\Gamma}$. Now note that $\mathfrak{rr}_{\Gamma} = \mathfrak{D}(R_{\Gamma}, \mathfrak{S}_{cc}, \mathcal{S}_{\omega})$. We will

write $\mathscr{R}_{\Gamma} = \langle R_{\Gamma}, \mathfrak{S}_{cc}, \mathcal{S}_{\omega} \rangle.$

Let $\mathfrak{rr}_{\Gamma}^{\perp} = \mathfrak{B}(R_{\Gamma}, \mathfrak{S}_{cc}, \mathcal{S}_{\omega})$, which is the least size of a set $A \subseteq \mathfrak{S}_{cc}$ such that there is no $\pi \in \mathcal{S}_{\omega}$ for which $a_{\pi} \in \mathfrak{S}_{\Gamma}$ for all $a \in A$. These are the *dual rearrangement numbers*.

Theorem Blass, Brendle, Brian, Hamkins, Hardy, and Larson 2019 $\mathscr{R}_o \preceq \mathscr{R}_{f,i}.$

Proof. The maps $\rho_{-}: \mathfrak{S}_{cc} \to \mathfrak{S}_{cc}$ the identity and $\rho_{+}: \mathcal{S}_{\omega} \to \mathcal{S}_{\omega}$ sending $\pi \mapsto \tau_{\pi}$ form a Tukey connection.

Corollary

 $\mathfrak{rr}_o \leq \mathfrak{rr}_{f,i} \text{ and } \mathfrak{rr}_o^{\perp} \geq \mathfrak{rr}_{f,i}^{\perp}.$

We showed $\mathfrak{rr}_o \leq \mathfrak{rr}_{f,i,o}$ in a way that does not translate to a Tukey connection: we used a witness $C \subseteq S_\omega$ for $\mathfrak{rr}_{f,i,o}$, and created a witness for \mathfrak{rr}_o by considering $C \cup C'$ where C' was the set of mixings of $\pi \in C$ with the identity permutation. But what choice of ρ_+ gives us $\rho_+[C] = C \cup C'$?

Instead, we need a **new proof** to show that $\mathfrak{rr}_o^{\perp} = \mathfrak{rr}_{f,i,o}^{\perp}$. Let me give a very cursory sketch of the new proof, and refer to my Master's thesis for details.

If $\mathscr{R} = \langle R, X, Y \rangle$, $\mathscr{S} = \langle S, A, B \rangle$ are relational systems, we can define the *composition* $\mathscr{R} \cap \mathscr{S} = \langle T, P, Q \rangle$ where $P = X \times {}^{Y}A$ and $Q = Y \times B$ and (x, f) T (y, b) if x R y and for f(y) = a we have a S b.

Dualising $\mathfrak{rr}_o = \mathfrak{rr}_{f,i,o}$

Lemma See e.g. Blass 2010 $\mathfrak{D}(\mathscr{R} \cap \mathscr{S}) = \mathfrak{D}(\mathscr{R}) \cdot \mathfrak{D}(\mathscr{S})$, and $\mathfrak{B}(\mathscr{R} \cap \mathscr{S}) = \min{\{\mathfrak{B}(\mathscr{R}), \mathfrak{B}(\mathscr{S})\}}.$

Theorem vdV. 2019, with much help from Brendle

 $\mathfrak{rr}_{o}^{\perp} = \mathfrak{rr}_{f,i,o}^{\perp}$. *Proof sketch.* We first show that $\mathscr{R}_{f,i,o} \preceq \mathscr{B}$ where \mathscr{B} is a relational system with $\mathfrak{D}(\mathscr{B}) = \mathfrak{b}$. The proof that $\mathfrak{rr}_{f,i,o} \geq \mathfrak{b}$ from the original rearrangement number paper suffices. This proves that $\max{\mathfrak{rr}_{f,i,o}, \mathfrak{b}} = \mathfrak{rr}_{f,i,o}$ and $\min{\mathfrak{rr}_{f,i,o}, \mathfrak{d}} = \mathfrak{rr}_{f,i,o}^{\perp}$. Then we show that $\mathscr{R}_o \preceq \mathscr{R}_{f,i,o} \cap \mathscr{B}$. By the above, we get $\mathfrak{rr}_{o}^{\perp} \geq \mathfrak{rr}_{f,i,o}^{\perp}$, which is all we need. Let $f, g \in {}^{\omega}\omega$, then we define $f \leq g$ (or g dominates f) if $\{n \in \omega \mid f(n) \not\leq g(n)\}$ is finite.

Let $X, Y \in [\omega]^{\omega}$, then we define $X \dagger Y$ (or X splits Y) if $Y \cap X$ and $Y \setminus X$ are both infinite.

Let \mathcal{M} be the σ -ideal of meagre subsets of ${}^{\omega}\omega$ and \mathcal{N} be the σ -ideal of Lebesgue null subsets of ${}^{\omega}2$.

$$\begin{split} \mathfrak{d} &= \mathfrak{D}(\leq^*, {}^{\omega}\omega, {}^{\omega}\omega) \qquad \mathfrak{b} = \mathfrak{B}(\leq^*, {}^{\omega}\omega, {}^{\omega}\omega) \\ \mathfrak{s} &= \mathfrak{D}(\dagger, [\omega]^{\omega}, [\omega]^{\omega}) \qquad \mathfrak{r} = \mathfrak{B}(\dagger, [\omega]^{\omega}, [\omega]^{\omega}) \\ \operatorname{cov}(\mathcal{M}) &= \mathfrak{D}(\in, {}^{\omega}\omega, \mathcal{M}) \qquad \operatorname{non}(\mathcal{M}) = \mathfrak{B}(\in, {}^{\omega}\omega, \mathcal{M}) \\ \operatorname{cov}(\mathcal{N}) &= \mathfrak{D}(\in, {}^{\omega}2, \mathcal{N}) \qquad \operatorname{non}(\mathcal{N}) = \mathfrak{B}(\in, {}^{\omega}2, \mathcal{N}) \end{split}$$

Relations between cardinal characteristics

Cohen model

Random model

Short random model

Hechler model

Short Hechler model

Models using \mathbb{P}_I and \mathbb{I}_X

Question

Are rr_{fi} , rr_f and rr_i consistently different (and similar for the duals)?

Question

Are $\mathfrak{rr} < \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) < \mathfrak{rr}^\perp$ consistent?

Question

Are there any cardinal characteristics that form ZFC provable upper bounds to \mathfrak{rr}_f and \mathfrak{rr}_i ? Or lower bounds to \mathfrak{rr}_i^{\perp} and \mathfrak{rr}_f^{\perp} ?

Consider the least size of a family $\mathcal{X} \subseteq [\omega]^{\omega}$ such that for every $a \in \mathfrak{S}_{cc}$ there is some $X \in \mathcal{X}$ such that $\sum_X a$ converges.

Clearly $\mathcal{X} = \{\omega\}$ witnesses the above. But what if every $X \in \mathcal{X}$ must be *coinfinite*? This change is significant, and implies that $\operatorname{cov}(\mathcal{M}) \leq |\mathcal{X}|$.

Note that if $X \subseteq \omega$ is cofinite, then $\sum a$ converges / diverges to infinity / oscillates exactly when $\sum_X a$ does. To change the convergence behaviour, we can ignore the cofinite sets.

Therefore, we should define subseries numbers using the set $[\omega]_{\omega}^{\omega} = \{X \in [\omega]^{\omega} \mid \omega \setminus X \text{ is infinite}\} \text{ instead of } [\omega]^{\omega}.$

For Γ a set of convergence behaviours, we define the relation $S_{\Gamma} \subseteq \mathfrak{S}_{cc} \times [\omega]^{\omega}_{\omega}$ by $a \ S_{\Gamma} \ X$ if and only if $\sum_{X} a$ behaves according to Γ . We define $\mathfrak{g}_{\Gamma} = \mathfrak{D}(S_{\Gamma}, \mathscr{S}_{cc}, [\omega]^{\omega}_{\omega})$.

Our main interests will be $\mathfrak{g} = \mathfrak{g}_{i,o}$, \mathfrak{g}_i , \mathfrak{g}_o , \mathfrak{g}_c , \mathfrak{g}_{cc} and \mathfrak{g}_{ac} and their dual cardinal characteristics.

The subseries numbers $\mathfrak{F}, \mathfrak{F}_i$ and \mathfrak{F}_o were originally studied by Brendle, Brian, and Hamkins (2019) and defined using $[\omega]^{\omega}$. It is, however, easy to prove that our definition results in the same cardinal characteristics.

The cardinals \mathfrak{B}_c , \mathfrak{B}_{cc} and \mathfrak{B}_{ac} were introduced in my Master's thesis and are subject of the preprint vdV. (2025).

Cohen model

Random model

Blass-Shelah model

Laver model

The dual to \mathfrak{B}_i

Remember that \mathfrak{g}_i^{\perp} is the least number of a set $A \subseteq \mathfrak{S}_{cc}$ such that there exists no $X \in [\omega]_{\omega}^{\omega}$ for which $\sum_X a$ tends to infinity for all $a \in A$.

It is easy to see that $\mathfrak{g}_i^{\perp} > 2$. Consider for $a, b \in \mathfrak{S}_{cc}$ the sets

$$X^{++} = \{n \mid a_n > 0, b_n > 0\} \quad X^{+-} = \{n \mid a_n > 0, b_n \le 0\}$$
$$X^{-+} = \{n \mid a_n \le 0, b_n > 0\} \quad X^{--} = \{n \mid a_n \le 0, b_n \le 0\}$$

At least one cell per row gives a subseries of $\sum a$ tending to infinity.

At least one cell per column gives a subseries of $\sum b$ tending to infinity.

A case-by-case analysis shows we can make both $\sum a$ and $\sum b$ tend to infinity with one subset.

The dual to \mathfrak{B}_i

Will Brian (2018) showed that $\mathfrak{g}_i^{\perp} > 3$, using a more complicated case-by-case argument. Surprisingly, Fedor Nazarov showed on *MathOverflow* (and Brian repeated the argument in his paper) that:

Theorem Nazarov

 $\mathfrak{g}_i^\perp=4$.

That is, there exist four CC series such that for any $X \in [\omega]_{\omega}^{\omega}$, at least one of the four series will diverge by oscillation (and thus not tend to infinity).

For this reason, it is hard to build a forcing notion that forces $\mathfrak{g}_i < \mathfrak{c}$. Indeed, the consistency of $\mathfrak{g}_i < \mathfrak{c}$ is an open problem.

Remember that $\mathfrak{rr}_o = \mathfrak{rr}_{i,o}$. Can we prove $\mathfrak{g}_o = \mathfrak{g}_{i,o}$? This is also an open problem, but there is a partial solution.

Theorem Brendle, Brian, and Hamkins 2019, vdV. 2019 $\mathfrak{g}_o \leq \max{\mathfrak{g}, \mathfrak{b}}$ and $\mathfrak{g}_o^{\perp} \geq \min{\mathfrak{g}^{\perp}, \mathfrak{d}}$.

As with the rearrangement number, the original proof cannot be translated to a Tukey connection. However, there exists a Tukey connection with two sequential compositions that shows that $\mathfrak{g}_o \leq \max{\{\mathfrak{g}, \mathfrak{b}, \mathfrak{s}\}}$. Since $\mathfrak{s} \leq \mathfrak{g}$ (and dually $\mathfrak{r} \geq \mathfrak{g}^{\perp}$), this provides a dualisable proof of the above theorem.

About \mathfrak{B}_{cc}

Theorem vdV. (2025+) $\mathscr{S} = \langle \dagger, [\omega]_{\omega}^{\omega}, [\omega]_{\omega}^{\omega} \rangle \preceq \mathscr{S}_{cc} = \langle S_{cc}, \mathfrak{S}_{cc}, [\omega]_{\omega}^{\omega} \rangle.$ *Proof.* We let $\rho_{+} : [\omega]_{\omega}^{\omega} \to [\omega]_{\omega}^{\omega}$ be the identity. Given $X \in [\omega]_{\omega}^{\omega}$ assume without loss that $0 \in X$, and let $\langle I_{n} \mid n \in \omega \rangle$ be an interval partition of ω such that $X = \bigcup_{n \in \omega} I_{2n}$. For $i \in \omega$ let $n \in \omega$ such that $i \in I_{n}$ and $s_{n} = |I_{n}|$, then we define $a_{i} = \frac{(-1)^{n}}{s_{n} \cdot n}$, and see that $a \in \mathfrak{S}_{cc}$. We let $\rho_{-}(X) = a$.

Let $Y \in [\omega]_{\omega}^{\omega}$ and $\sum_{Y} a$ be CC. If $Y \cap X$ is finite, then $a_i > 0$ for finitely many $i \in Y$, contradicting that $\sum_{Y} a$ is CC. If $Y \setminus X$ is finite, then $a_i < 0$ for finitely many $i \in Y$, also a contradiction. Thus X splits Y.

Question

Is $\mathfrak{g}_i = \mathfrak{c}$ provable?

Question

Is $\mathfrak{g} = \mathfrak{g}_o$ or $\mathfrak{g}^{\perp} = \mathfrak{g}_o^{\perp}$ provable?

Question

Is $cov(\mathcal{M}) < \mathfrak{g}_o^{\perp}$ consistent?

Question

Are any of $cov(\mathcal{M}) < \mathfrak{F}_c$ or $\mathfrak{F}_c < \mathfrak{F}_{cc}$ or $\mathfrak{F}_{cc} < \mathfrak{d}$ consistent?

References

- Blass, A. (2010). **"Combinatorial Cardinal Characteristics of the Continuum".** In: Handbook of Set Theory Vol. 1. Springer, Dordrecht, pp. 395– 489.
- Blass, A., Brendle, J., Brian, W., Hamkins, J. D., Hardy, M., and Larson, P. (Oct. 2019). "The rearrangement number". In: Transactions of the American Mathematical Society 373.1, pp. 41–69.
- Brendle, J., Brian, W., and Hamkins, J. D. (2019). "The subseries number". In: Fundamenta Mathematicae 247.1, pp. 49–85.
- Brian, W. (Nov. 2018). "Three conditionally convergent series, but not four". In: Bulletin of the London Mathematical Society 51.2, pp. 207–222.
- Vlugt, T. van der (2019). *Rearrangement and Subseries Numbers*. Master's thesis. URL: https://tvdvlugt.nl/mthesis.pdf.
- - (2025). Subseries Numbers for Convergent Subseries. Preprint.