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Infinite series 1/28

Given a sequence a = ⟨an | n ∈ ω⟩ ∈ ωR with limn→∞ an = 0,
we may consider the infinite series

∑
a =

∑
n∈ω an and the

sequence of partial sums ⟨Pn | n ∈ ω⟩, where Pn =
∑

k≤n an.

It is possible that limn→∞ Pn is equal to a real number, called
its limit, in which case we say

∑
a converges. If

∑
n∈ω |an|

converges, then
∑

a is absolutely convergent, or else,
∑

a is
conditionally convergent.

Otherwise
∑

a diverges. Either limn→∞ Pn equals ∞ or −∞, in
which case

∑
a tends to infinity, or ⟨Pn | n ∈ ω⟩ has multiple

accumulation points, in which case
∑

a oscillates.



Riemann’s rearrangement theorem 2/28

Let Sω be the set of permutations (= bijections) π : ω → ω, and
for π ∈ Sω we will write

∑
aπ =

∑
n∈ω aπ(n).

Theorem Riemann

If
∑

a is conditionally convergent and r ∈ R, then

◦ there is π ∈ Sω s.t.
∑

aπ = r,

◦ there is ρ ∈ Sω s.t.
∑

aρ tends to (±) infinity,

◦ there is σ ∈ Sω s.t.
∑

aσ diverges by oscillation



Rearrangement number 3/28

In 2015, Michael Hardy asked on MathOverflow:

How large does a subset C ⊆ Sω have to be, such that for
every conditionally convergent

∑
a there exists some π ∈ C

for which
∑

aπ does not converge to the same value as
∑

a?

The answer turns out to be quite interesting, and became
subject of a paper by Blass, Brendle, Brian, Hamkins, Hardy,
and Larson (2019).

To spoil the answer to Hardy’s original question:

max {b, cov(N )} ≤ rr ≤ non(M),

where the rearrangement number rr is the least cardinality of
such C.



Riemann’s theorem for subseries 4/28

Let [ω]ω be the set of infinite subsets of ω, and for X ∈ [ω]ω we
will write

∑
X a =

∑
n∈X an (ordered in the natural order X

inherits from ω).

Theorem
If
∑

a is conditionally convergent and r ∈ R, then

◦ there is X ∈ [ω]ω s.t.
∑

X a = r,

◦ there is Y ∈ [ω]ω s.t.
∑

Y a tends to (±) infinity,

◦ there is Z ∈ [ω]ω s.t.
∑

Z a diverges by oscillation



Subseries numbers 5/28

Two months after Hardy’s question, Rahman Mohammadpour
asked on MathOverflow whether weakening “permutations” to
“injections” in the definition of rr results in a consistently
different cardinal characteristic.

The answer became subject to another paper by Brendle,
Brian, and Hamkins (2019).

Let sz be the least size of a family D ⊆ [ω]ω such that for every
conditionally convergent

∑
a there exists some X ∈ D such

that
∑

X a diverges. We have

max {s, cov(N )} ≤ sz ≤ non(M).

The answer to Mohammadpour’s original question is the
subrearrangement number sr, and sr = min {sz, rr}.



(What is that Symbol?!) 6/28

In the original paper, the authors used the symbol ß for the
subseries number. This letter, the Eszett of the German
language, commonly replaces "ss".

But cardinal characteristics are usually displayed using fraktur
script! So what do we do?

1. Import the package yfonts,

2. Now we have a fraktur medial s at our disposal: s

3. Glue it together with the fraktur z

4. Subseries number: sz.



The family of rearrangement numbers 7/28

We will define the following convergence behaviours:
f “converges to a different limit”
i “tends to infinity”
o “oscillates”

For Γ a set of convergence behaviours, we can define a
rearrangement number rrΓ as the least cardinality of a set
C ⊆ Sω such that for every CC

∑
a there exists π ∈ C such

that
∑

aπ behaves according to one of the elements of Γ.

For instance, the original rr is equal to rrf,i,o. We observe:

rrf,i,o

rrf,i

rrf,o

rri,o

rrf

rri

rro (
An arrow x → y

stands for x ≤ y

)



Are the rearrangement numbers all different? 8/28

No.

Let π ∈ Sω, then we call τπ ∈ Sω a mixing of π with the identity
if τπ[n] = π[n] for infinitely many n, and τπ[k] = k for infinitely
many k.

Theorem Blass, Brendle, Brian, Hamkins, Hardy, and Larson 2019

rrf,i,o = rrf,o = rri,o = rro.

Proof. It suffices to show rro ≤ rrf,i,o.

Let C ⊆ Sω witness rrf,i,o and
∑

a = r be CC. If there is π ∈ C

such that
∑

aπ = r′ ∈ R ∪ {∞,−∞} and r′ ̸= r, then
∑

aτπ

has both r and r′ as accumulation points, and thus oscillates.

Therefore C ∪ C ′, where C ′ = {τπ | π ∈ Sω}, witnesses rro.



Relational systems 9/28

A relational system is a triple R = ⟨R,X, Y ⟩ where R ⊆ X × Y .
We call X the set of challenges and Y the set of responses. A
response y meets the challenge x if x R y.

We define two cardinal characteristics:

D(R,X, Y ) = min {|D| | D ⊆ Y and ∀x ∈ X∃y ∈ D(x R y)}

B(R,X, Y ) = min
{
|B| | B ⊆ X and ∀y ∈ Y ∃x ∈ B(x��R y)

}
Note that B(R,X, Y ) = D(��R

−1
, Y,X). Thus, R⊥ = ⟨��R−1

, Y,X⟩
is called the dual relational system of R = ⟨R,X, Y ⟩.



Tukey connections 10/28

If R = ⟨R,X, Y ⟩ and S = ⟨S,A,B⟩ are relational systems,
then a Tukey connection is a pair of maps ρ− : X → A and
ρ+ : B → Y such that for any x ∈ X and b ∈ B for which
ρ−(x) S b holds, also x R ρ+(b) holds. If a Tukey connection
from R to S exists, we write this as R ⪯ S .

Lemma

R ⪯ S implies

D(R,X, Y ) ≤ D(S,A,B), and

B(R,X, Y ) ≥ B(S,A,B).



Relational systems of rearrangement numbers 11/28

Let us define some more convergence behaviours:
c “converges”
ac “converges absolutely”
cc “converges conditionally”

For Γ a set of convergence behaviours, define SΓ as the set of
a ∈ ωR such that

∑
a behaves according to an element of Γ.

Let RΓ ⊆ Scc × Sω be the relation defined by a RΓ π if and
only if aπ ∈ SΓ. Now note that rrΓ = D(RΓ,Scc,Sω). We will
write RΓ = ⟨RΓ,Scc,Sω⟩.

Let rr⊥Γ = B(RΓ,Scc,Sω), which is the least size of a set
A ⊆ Scc such that there is no π ∈ Sω for which aπ ∈ SΓ for all
a ∈ A. These are the dual rearrangement numbers.



An example 12/28

Theorem Blass, Brendle, Brian, Hamkins, Hardy, and Larson 2019

Ro ⪯ Rf,i.

Proof. The maps ρ− : Scc → Scc the identity and ρ+ : Sω → Sω

sending π 7→ τπ form a Tukey connection.

Corollary
rro ≤ rrf,i and rr⊥o ≥ rr⊥f,i.



Is every proof dualisable? 13/28

We showed rro ≤ rrf,i,o in a way that does not translate to a
Tukey connection: we used a witness C ⊆ Sω for rrf,i,o, and
created a witness for rro by considering C ∪ C ′ where C ′ was
the set of mixings of π ∈ C with the identity permutation. But
what choice of ρ+ gives us ρ+[C] = C ∪ C ′?

Instead, we need a new proof to show that rr⊥o = rr⊥f,i,o. Let
me give a very cursory sketch of the new proof, and refer to
my Master’s thesis for details.

If R = ⟨R,X, Y ⟩,S = ⟨S,A,B⟩ are relational systems, we can
define the composition R ⌢S = ⟨T, P,Q⟩ where P = X × Y A

and Q = Y ×B and (x, f) T (y, b) if x R y and for f(y) = a we
have a S b.



Dualising rro = rrf,i,o 14/28

Lemma See e.g. Blass 2010

D(R ⌢S ) = D(R) ·D(S ), and
B(R ⌢S ) = min{B(R),B(S )}.

Theorem vdV. 2019, with much help from Brendle

rr⊥o = rr⊥f,i,o.

Proof sketch. We first show that Rf,i,o ⪯ B where B is a
relational system with D(B) = b. The proof that rrf,i,o ≥ b

from the original rearrangement number paper suffices. This
proves that max{rrf,i,o, b} = rrf,i,o and min{rr⊥f,i,o, d} = rr⊥f,i,o.

Then we show that Ro ⪯ Rf,i,o
⌢B. By the above, we get

rr⊥o ≥ rr⊥f,i,o, which is all we need.



Various cardinal characteristics 15/28

Let f, g ∈ ωω, then we define f ≤∗ g (or g dominates f ) if
{n ∈ ω | f(n) ̸≤ g(n)} is finite.

Let X,Y ∈ [ω]ω, then we define X † Y (or X splits Y ) if Y ∩X

and Y \X are both infinite.

Let M be the σ-ideal of meagre subsets of ωω and N be the
σ-ideal of Lebesgue null subsets of ω2.

d = D(≤∗, ωω, ωω) b = B(≤∗, ωω, ωω)

s = D(†, [ω]ω, [ω]ω) r = B(†, [ω]ω, [ω]ω)

cov(M) = D(∈, ωω,M) non(M) = B(∈, ωω,M)

cov(N ) = D(∈, ω2,N ) non(N ) = B(∈, ω2,N )



Relations between cardinal characteristics 16/28

ℵ1

cov(N ) non(M)

b d

cov(M) non(N )

s

r 2ℵ0



Overview of rearrangement numbers 17/28
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Consistency results 18/28
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Open problems 19/28

Question
Are rrfi, rrf and rri consistently different (and similar for the
duals)?

Question
Are rr < non(M) and cov(M) < rr⊥ consistent?

Question
Are there any cardinal characteristics that form ZFC provable
upper bounds to rrf and rri? Or lower bounds to rr⊥i and rr⊥f ?



Subseries and coinfinite sets 20/28

Consider the least size of a family X ⊆ [ω]ω such that for every
a ∈ Scc there is some X ∈ X such that

∑
X a converges.

Clearly X = {ω} witnesses the above. But what if every X ∈ X
must be coinfinite? This change is significant, and implies that
cov(M) ≤ |X |.

Note that if X ⊆ ω is cofinite, then
∑

a converges / diverges
to infinity / oscillates exactly when

∑
X a does. To change the

convergence behaviour, we can ignore the cofinite sets.

Therefore, we should define subseries numbers using the set
[ω]ωω = {X ∈ [ω]ω | ω \X is infinite} instead of [ω]ω.



The family of subseries numbers 21/28

For Γ a set of convergence behaviours, we define the relation
SΓ ⊆ Scc × [ω]ωω by a SΓ X if and only if

∑
X a behaves

according to Γ. We define szΓ = D(SΓ,Scc, [ω]
ω
ω).

Our main interests will be sz = szi,o , szi , szo , szc , szcc and szac and
their dual cardinal characteristics.

The subseries numbers sz, szi and szo were originally studied by
Brendle, Brian, and Hamkins (2019) and defined using [ω]ω. It
is, however, easy to prove that our definition results in the
same cardinal characteristics.

The cardinals szc , szcc and szac were introduced in my Master’s
thesis and are subject of the preprint vdV. (2025).
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The dual to szi 24/28

Remember that sz⊥i is the least number of a set A ⊆ Scc such
that there exists no X ∈ [ω]ωω for which

∑
X a tends to infinity

for all a ∈ A.

It is easy to see that sz⊥i > 2. Consider for a, b ∈ Scc the sets

X++ = {n | an > 0, bn > 0} X+− = {n | an > 0, bn ≤ 0}
X−+ = {n | an ≤ 0, bn > 0} X−− = {n | an ≤ 0, bn ≤ 0}

At least one cell per row gives a subseries of
∑

a tending to
infinity.
At least one cell per column gives a subseries of

∑
b tending

to infinity.

A case-by-case analysis shows we can make both
∑

a and∑
b tend to infinity with one subset.



The dual to szi 25/28

Will Brian (2018) showed that sz⊥i > 3, using a more
complicated case-by-case argument. Surprisingly, Fedor
Nazarov showed on MathOverflow (and Brian repeated the
argument in his paper) that:

Theorem Nazarov

sz⊥i = 4 .

That is, there exist four CC series such that for any X ∈ [ω]ωω, at
least one of the four series will diverge by oscillation (and
thus not tend to infinity).

For this reason, it is hard to build a forcing notion that forces
szi < c. Indeed, the consistency of szi < c is an open problem.



The relation between sz and szo 26/28

Remember that rro = rri,o. Can we prove szo = szi,o? This is also
an open problem, but there is a partial solution.

Theorem Brendle, Brian, and Hamkins 2019, vdV. 2019

szo ≤ max{sz, b} and sz⊥o ≥ min{sz⊥, d}.

As with the rearrangement number, the original proof cannot
be translated to a Tukey connection. However, there exists a
Tukey connection with two sequential compositions that
shows that szo ≤ max{sz, b, s}. Since s ≤ sz (and dually r ≥ sz⊥),
this provides a dualisable proof of the above theorem.



About szcc 27/28

Theorem vdV. (2025+)

S = ⟨†, [ω]ωω, [ω]ωω⟩ ⪯ Scc = ⟨Scc,Scc, [ω]
ω
ω⟩.

Proof. We let ρ+ : [ω]ωω → [ω]ωω be the identity. Given X ∈ [ω]ωω

assume without loss that 0 ∈ X , and let ⟨In | n ∈ ω⟩ be an
interval partition of ω such that X =

⋃
n∈ω I2n. For i ∈ ω let

n ∈ ω such that i ∈ In and sn = |In|, then we define ai =
(−1)n

sn·n ,
and see that a ∈ Scc. We let ρ−(X) = a.

Let Y ∈ [ω]ωω and
∑

Y a be CC. If Y ∩X is finite, then ai > 0 for
finitely many i ∈ Y , contradicting that

∑
Y a is CC. If Y \X is

finite, then ai < 0 for finitely many i ∈ Y , also a contradiction.
Thus X splits Y .



Open problems 28/28

Question
Is szi = c provable?

Question
Is sz = szo or sz⊥ = sz⊥o provable?

Question
Is cov(M) < sz⊥o consistent?

Question
Are any of cov(M) < szc or szc < szcc or szcc < d consistent?



References

• Blass, A. (2010). “Combinatorial Cardinal Characteristics of the Con-
tinuum”. In: Handbook of Set Theory Vol. 1. Springer, Dordrecht, pp. 395–
489.

• Blass, A., Brendle, J., Brian, W., Hamkins, J. D., Hardy, M., and Larson,
P. (Oct. 2019). “The rearrangement number”. In: Transactions of the
American Mathematical Society 373.1, pp. 41–69.

• Brendle, J., Brian, W., and Hamkins, J. D. (2019). “The subseries num-
ber”. In: Fundamenta Mathematicae 247.1, pp. 49–85.

• Brian, W. (Nov. 2018). “Three conditionally convergent series, but not
four”. In: Bulletin of the London Mathematical Society 51.2, pp. 207–222.

• Vlugt, T. van der (2019). Rearrangement and Subseries Numbers. Mas-
ter’s thesis. url: https://tvdvlugt.nl/mthesis.pdf.

• — (2025). Subseries Numbers for Convergent Subseries. Preprint.

https://tvdvlugt.nl/mthesis.pdf

