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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:

(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player
II plays y(n) ∈ 2.

(Infinite) x and y have to be infinite (2ω ∼= P(ω)).
(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.
(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:

(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player
II plays y(n) ∈ 2.

(Infinite) x and y have to be infinite (2ω ∼= P(ω)).
(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.
(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:
(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player

II plays y(n) ∈ 2.

(Infinite) x and y have to be infinite (2ω ∼= P(ω)).
(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.

(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:
(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player

II plays y(n) ∈ 2.
(Infinite) x and y have to be infinite (2ω ∼= P(ω)).

(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.
(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:
(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player

II plays y(n) ∈ 2.
(Infinite) x and y have to be infinite (2ω ∼= P(ω)).

(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.
(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:
(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player

II plays y(n) ∈ 2.
(Infinite) x and y have to be infinite (2ω ∼= P(ω)).

(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):

(One) When exactly one player breaks (Infinite), the winner is the
other one.

(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:
(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player

II plays y(n) ∈ 2.
(Infinite) x and y have to be infinite (2ω ∼= P(ω)).

(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.

(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting* game
A splitting* game is the following game of length ω played by Player
I and Player II:

Basic Rules:
(Binary) At each stage n < ω, Player I plays x(n) ∈ 2 and then Player

II plays y(n) ∈ 2.
(Infinite) x and y have to be infinite (2ω ∼= P(ω)).

(Splitting) Player II wins if x is split by y.

Player I x(0) ∈ 2 x(1) ∈ 2 . . .

Player II y(0) ∈ 2 y(1) ∈ 2 . . .

If either player breaks (Infinite):
(One) When exactly one player breaks (Infinite), the winner is the

other one.
(Both*) When both players break (Infinite), the winner is Player II.

4 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

splitting** game
In (Both*), both players break (Infinite) and they are equally guilty,
but the winner is defined as Player II, which is not necessarily
obvious.

Hence, we just define another game by switching the
winner in this case:

A splitting** game is the game following all the previous rules, but
(Both*) is replaced by:

(Both**) When both players break (Infinite), the winner is Player I.

Table: splitting* game.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I II

Table: splitting** game.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I I
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Player II has a winning strategy

Player II has a winning strategy σ for both games as follows:

I (playing x) 0 0 0 1 1 1 1 1 0 1 1 · · ·
II (playing y) 1 1 1 0 1 0 1 0 1 1 0 · · ·

• y = σ ∗ x is always infinite.
• If x is infinite, then y = σ ∗ x splits x.

Thus, Player I does not have a winning strategy.

What if Player II’s play is restricted?
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Restricted games

Let A ⊆ 2ω. The splitting*[splitting**] game with respect to A is a
game following the same rule as the splitting*[splitting**] game, but
the winning condition is replaced by:

“Player II wins if the player wins the splitting*[splitting**] game with
a play y ∈ A.”

Now we can define the following cardinal invariants:

s∗II := min
{
|A| :

A ⊆ P(ω), Player II has a winning strategy
for the splitting* game with respect to A

}
,

s∗I := min
{
|A| :

A ⊆ P(ω), Player I has no winning strategy
for the splitting* game with respect to A

}
.

Define s∗∗II and s∗∗I similarly for the splitting** game.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

s◦II = min{|A| : P. II has a w.s. for the splitting◦ game w.r.t. A}
s◦I = min{|A| : P. I has no w.s. for the splitting◦ game w.r.t. A}

Table: splitting* game.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I II

Table: splitting** game.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I I

Clearly s◦I ≤ s◦II holds for ◦ = ∗, ∗∗. Moreover, for Player II, *-game
is easier to win than **-game, so s∗• ≤ s∗∗• holds for • = I, II. Thus,
s∗I is the minimum of the four numbers s◦• and:

Lemma
s ≤ s∗I .

Proof. Let A witness s∗I . Given an infinite x, let σ be a strategy such
that σ ∗ y = x for any y. σ is not winning over A, so some y ∈ A
splits σ ∗ y = x. Since x was arbitrary, A is a splitting family. 2
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

ZFC results
We obtain the following diagram:

s

s∗I

s∗∗I

non(M)non(N ) d

s∗∗II = s∗II = c

min{s∗∗I , b}

Question
Does s∗∗I ≤ d hold?
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Main Theorem

We obtain the following consistency result on the remaining two
numbers s∗I and s∗∗I :

Theorem (Cruz, Goto, Hayashi and Y.)
s < s∗I < s∗∗I consistently holds.

The “s <” part is obtained by application of their method by
Goldstern, Kellner, Mejía and Shelah [GKMS21] of preserving
splitting families through the forcing iteration, so we focus on
s∗I < s∗∗I .
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Enjoy Con(s∗I < s∗∗I ) more!
Enjoy the consistency of s∗I < s∗∗I more!

Recall:
s∗I = min{|A| : P. I has no w.s. for the splitting* game w.r.t. A}
s∗∗I = min{|A| : P. I has no w.s. for the splitting** game w.r.t. A}

Assume:
1 Player I = me and Player II = you.
2 s∗I < s∗∗I holds and A ⊆ 2ω is a witness of s∗I .
3 We are playing the splitting* game w.r.t. A.

Since |A| = s∗I < s∗∗I , there is a winning strategy σ for the splitting**
game w.r.t. A, so:

4 I follow the strategy σ.
5 Now it’s your turn to chose a play y ∈ A.

You can beat me, because A witnesses s∗I , so my σ is not a w.s. for
this splitting* game w.r.t. A.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

What is your winning play?
How do you win? Recall the rules of the two kinds of games:

Table: splitting* game.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I II

Table: splitting** game.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I I

If you follow the basic rule (Infinite), the rules are the same and my
σ is a w.s. for the splitting** game w.r.t. A, so you will lose.

That is, if you want to beat me, you should intentionally break this
basic rule, namely, play only 0 after some point. Then, I will
somehow end up playing only 0 eventually and breaking the rule as
well. Finally, you will be judged as the winner in this current rule set,
the splitting* game!
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

notation

Let us introduce some notation. Let x, y, z ∈ 2ω.

• Str denotes the set of all strategies, namely, Str := 2(2<ω). For
σ ∈ Str, σ ∗ z denotes the play according to the strategy σ and
the (opponent’s) play z, i.e., σ ∗ z(n) := σ(z↾n) for n < ω.

• y ◁∗ x :⇔ Player I wins the splitting* game with the play x
against Player II with the play y. Define y ◁∗∗ x similarly for the
splitting** game. y ◁∗ σ :⇔ y ◁∗ σ ∗ y and y ◁∗∗ σ :⇔ y ◁∗∗ σ ∗ y.

Thus,
s∗I = min{|A| : A ⊆ 2ω, (¬∃σ ∈ Str) (∀y ∈ A) (y ◁∗ σ)}, and
s∗∗I = min{|A| : A ⊆ 2ω, (¬∃σ ∈ Str) (∀y ∈ A) (y ◁∗∗ σ)}.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

The forcing notion P∗∗ which increases s∗∗I

We introduce the poset P∗∗ which generically adds a winning
strategy for the splitting** game and hence increases s∗∗I :

Definition
• FinStr :=

∪
n<ω 22<n is the set of all finite partial strategies.

• P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω}.
(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and if |σ| ≤ n < |σ′| and
y ∈ F , then σ′(y↾n) ≤ y(n).

• σG denotes the generic strategy σG :=
∪

(σ,F )∈G σ.

Introduce some notation (“∀∞” denotes “for all but finitely many”):
• For x, y ∈ 2ω, x ≤∗ y :⇔ (∀∞n < ω) (x(n) ≤ y(n)).
• 0 := {z ∈ 2ω : (∀∞n < ω) (z(n) = 0)} is the set of all finite

subsets of ω.
Note that for x, y ∈ 2ω \ 0, if x ≤∗ y then x ⊆∗ y, i.e., x is almost
included by y and particularly x is not split by y.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Recall: P∗∗ := {(σ, F ) : σ ∈ FinStr, F ∈ [2ω]<ω},
(σ′, F ′) ≤ (σ, F ) :⇔ σ′ ⊇ σ, F ′ ⊇ F and if |σ| ≤ n < |σ′| and
y ∈ F , then σ′(y↾n) ≤ y(n). σG =

∪
(σ,F )∈G σ

Lemma
1 For any y ∈ 2ω, ⊩P∗∗ σG ∗ y ≤∗ y .
2 For any y ∈ 2ω \ 0, ⊩P∗∗ σG ∗ y ∈ 2ω \ 0.

Thus, if y ∈ 2ω \ 0, then σG ∗ y ∈ 2ω \ 0 and ⊆∗ y. Therefore:

Lemma
For any y ∈ 2ω, ⊩P∗∗ y ◁∗∗ σG. Hence, P∗∗ increases s∗∗I by finite
support iteration (Note that P∗∗ is σ-centered and thus ccc).

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I I

Fig: splitting** game.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

We can also define P∗ for s∗I by restriction:

Definition
P∗ := {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, order := restriction.

Lemma
1 For any y ∈ 2ω \ 0, ⊩P∗ σG ∗ y ≤∗ y .
2 For any y ∈ 2ω, ⊩P∗ σG ∗ y ∈ 2ω \ 0. (Key: y ∈ 0 ⇒ y /∈ F )

Thus, always σG ∗ y ∈ 2ω \ 0 and if y ∈ 2ω \ 0, σG ∗ y ⊆∗ y. Hence:

Lemma
For any y ∈ 2ω, ⊩P∗ y ◁∗ σG.

II
I ∞ < ∞

∞ (Splitting) II
< ∞ I II

Fig: splitting* game.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

1 Splitting* game and splitting** game

2 Forcing notions P∗ and P∗∗

3 UF-limits
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and
2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.

19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and
2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.

19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and
2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.

19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and

2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.

19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and
2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.

19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and
2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.

19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

How to force s∗I < s∗∗I

We showed P∗∗ increases s∗∗I .

In fact, P∗∗ does not increase s∗I .

To prove it, we use ultrafilter-limits (UF-limits), introduced by
Goldstern, Mejía and Shelah [GMS16] to keep the bounding
number b small through their forcing iteration, as follows:

1 (Key Lemma 1) P∗∗ has UF-limits, and
2 (Key Lemma 2) UF-limits keep s∗I small.

Thus, by iterating P∗∗ we can increase s∗∗I while keeping s∗I small
and can force s∗I < s∗∗I .

We focus on the first item in this talk.
19 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

UF-limits

An uf denotes a non-principal ultrafilter on ω in this talk.

Definition
1 Let D be an uf. Q ⊆ P is D-lim-linked if there exist a P-name

Ḋ′ of an ultrafilter extending D and a function limD : Qω → P
such that for any q̄ = ⟨qm : m < ω⟩ ∈ Qω,

limD q̄ ⊩ {m < ω : qm ∈ Ġ} ∈ Ḋ′.

Q ⊆ P is UF-lim-linked if it is D-lim-linked for any uf D.
2 P has UF-limits if P is a union of countably many UF-lim-linked

components.
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Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Key Lemma 1: P∗∗ has UF-limits

Key Lemma 1
Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is UF-lim-linked for
σ ∈ FinStr and k < ω. In particular, P∗∗ has UF-limits.

Sketch of proof. Let D be an uf and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
In the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, even if all ymi are
not in 0, y∞i might be in 0 and hence the same proof does not work.

21 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Key Lemma 1: P∗∗ has UF-limits

Key Lemma 1
Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is UF-lim-linked for
σ ∈ FinStr and k < ω. In particular, P∗∗ has UF-limits.

Sketch of proof. Let D be an uf and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω.

For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
In the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, even if all ymi are
not in 0, y∞i might be in 0 and hence the same proof does not work.

21 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Key Lemma 1: P∗∗ has UF-limits

Key Lemma 1
Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is UF-lim-linked for
σ ∈ FinStr and k < ω. In particular, P∗∗ has UF-limits.

Sketch of proof. Let D be an uf and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
In the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, even if all ymi are
not in 0, y∞i might be in 0 and hence the same proof does not work.

21 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Key Lemma 1: P∗∗ has UF-limits

Key Lemma 1
Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is UF-lim-linked for
σ ∈ FinStr and k < ω. In particular, P∗∗ has UF-limits.

Sketch of proof. Let D be an uf and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
In the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, even if all ymi are
not in 0, y∞i might be in 0 and hence the same proof does not work.

21 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Key Lemma 1: P∗∗ has UF-limits

Key Lemma 1
Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is UF-lim-linked for
σ ∈ FinStr and k < ω. In particular, P∗∗ has UF-limits.

Sketch of proof. Let D be an uf and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
In the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, even if all ymi are
not in 0, y∞i might be in 0 and hence the same proof does not work.

21 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Key Lemma 1: P∗∗ has UF-limits

Key Lemma 1
Qσ,k := {(σ′, F ) ∈ P∗∗ : σ′ = σ, |F | ≤ k} is UF-lim-linked for
σ ∈ FinStr and k < ω. In particular, P∗∗ has UF-limits.

Sketch of proof. Let D be an uf and
q̄ = ⟨qm := (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω.
For i < k, define y∞i ∈ 2ω by for n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

limD q̄ := (σ, {y∞i : i < k}) does work (details omitted). 2

Remark
In the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0}, even if all ymi are
not in 0, y∞i might be in 0 and hence the same proof does not work.

21 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

Topological aspect
UF-limits have to do with UF-limits in the topological sense:

Definition
Let X be a topological space, D be an uf, x̄ = ⟨xm : m < ω⟩ ∈ Xω

and x∞ ∈ X . x∞ is a D-limit if for any open neighborhood U of
x∞, {m < ω : xm ∈ U} ∈ D.

Lemma
Let X be a compact (Hausdorff) space and D an uf. Then, every
countable sequence in X has a (unique) D-limit.

Proof of existence. Assume ⟨xm : m < ω⟩ has no D-limits. Then,
each x ∈ X has some open neighborhood Ux such that
Ax := {m < ω : xm /∈ Ux} ∈ D. Since

∪
x∈X Ux = X , some finite

F ⊆ X satisfies
∪

x∈F Ux = X by compactness. Therefore,∩
x∈F Ax = {m < ω : xm /∈

∪
x∈F Ux = X} ∈ D is non-empty, a

contradiction. 2
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Lemma
Let X be a compact (Hausdorff) space and D an uf. Then, every
countable sequence in X has a (unique) D-limit.

Proof of existence. Assume ⟨xm : m < ω⟩ has no D-limits. Then,
each x ∈ X has some open neighborhood Ux such that
Ax := {m < ω : xm /∈ Ux} ∈ D. Since

∪
x∈X Ux = X , some finite

F ⊆ X satisfies
∪

x∈F Ux = X by compactness. Therefore,∩
x∈F Ax = {m < ω : xm /∈

∪
x∈F Ux = X} ∈ D is non-empty, a

contradiction. 2
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P∗∗ has compactness but P∗ does not

Let us get back to the case of P∗∗ and recall the definition of limD:

For q̄ = ⟨qm = (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω,
limD q̄ = (σ, {y∞i : i < k}) where each y∞i ∈ 2ω is defined by for
n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

Actually, each y∞i is the D-limit of ȳi := ⟨ymi : m < ω⟩ in Cantor
space 2ω, which is compact.

In comparison, in the case of P∗ = {(σ, F ) ∈ P∗∗ : F ⊆ 2ω \ 0},
2ω \ 0 is not compact!

23 / 25



Splitting* game and splitting** game Forcing notions P∗ and P∗∗ UF-limits

P∗∗ has compactness but P∗ does not

Let us get back to the case of P∗∗ and recall the definition of limD:

For q̄ = ⟨qm = (σ, Fm = {ymi : i < k}) : m < ω⟩ ∈ (Qσ,k)ω,
limD q̄ = (σ, {y∞i : i < k}) where each y∞i ∈ 2ω is defined by for
n < ω and j ∈ 2:

y∞i (n) = j :⇔ {m < ω : ymi (n) = j} ∈ D.

Actually, each y∞i is the D-limit of ȳi := ⟨ymi : m < ω⟩ in Cantor
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Conclesion and Question

The consistency of s∗I < s∗∗I is proved by using UF-limits, which
have to do with compactness, as follows:

1 The corresponding poset P∗∗ of s∗∗I has compactness (and
hence UF-limits).

2 The corresponding poset P∗ of s∗I does not have compactness
(or UF-limits), and UF-limits keep s∗I small.

3 Hence, s∗I < s∗∗I consistently holds.

Question
Can we find another (non-artificial) example of a pair of two
numbers such that their difference lies in whether their
corresponding forcing notions have compactness or not, and
consequently they are consistently different?
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