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If P is a poset, an antichain in P is a set of pairwise incomparable
elements.

If m ∈ ω, then an obvious obstruction to P containing an antichain
of size m + 1 is that P is a union of m many chains. In fact, this is
the only possible obstruction:

Theorem (Dilworth, 1950)
Let P be a finite poset. Then P is the union of w(P) many chains,
where w(P) = sup{|A| : A ⊆ P is an antichain} is the width of P.

Proof without words.
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If P is infinite but w(P) < ℵ0, then Dilworth’s Theorem is still
true (by a compactness argument).

However, the hypothesis that there is a finite bound on the sizes of
the antichains cannot be dropped.
The covering number of P , denoted cov(P), is the smallest
number of chains needed to cover P .

Theorem (Perles, 1963)
Let κ be an infinite cardinal. Consider the poset
[κ]2 := {〈α, β〉 : α < β < κ} ordered by 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ
and β ≤ δ. Then [κ]2 has no infinite antichains but cov([κ]2) = κ.
Posets with no infinite antichains are sometimes called FAC posets.



If P is infinite but w(P) < ℵ0, then Dilworth’s Theorem is still
true (by a compactness argument).
However, the hypothesis that there is a finite bound on the sizes of
the antichains cannot be dropped.

The covering number of P , denoted cov(P), is the smallest
number of chains needed to cover P .

Theorem (Perles, 1963)
Let κ be an infinite cardinal. Consider the poset
[κ]2 := {〈α, β〉 : α < β < κ} ordered by 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ
and β ≤ δ. Then [κ]2 has no infinite antichains but cov([κ]2) = κ.
Posets with no infinite antichains are sometimes called FAC posets.



If P is infinite but w(P) < ℵ0, then Dilworth’s Theorem is still
true (by a compactness argument).
However, the hypothesis that there is a finite bound on the sizes of
the antichains cannot be dropped.
The covering number of P , denoted cov(P), is the smallest
number of chains needed to cover P .

Theorem (Perles, 1963)
Let κ be an infinite cardinal. Consider the poset
[κ]2 := {〈α, β〉 : α < β < κ} ordered by 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ
and β ≤ δ. Then [κ]2 has no infinite antichains but cov([κ]2) = κ.
Posets with no infinite antichains are sometimes called FAC posets.



If P is infinite but w(P) < ℵ0, then Dilworth’s Theorem is still
true (by a compactness argument).
However, the hypothesis that there is a finite bound on the sizes of
the antichains cannot be dropped.
The covering number of P , denoted cov(P), is the smallest
number of chains needed to cover P .

Theorem (Perles, 1963)
Let κ be an infinite cardinal. Consider the poset
[κ]2 := {〈α, β〉 : α < β < κ} ordered by 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ
and β ≤ δ.

Then [κ]2 has no infinite antichains but cov([κ]2) = κ.
Posets with no infinite antichains are sometimes called FAC posets.



If P is infinite but w(P) < ℵ0, then Dilworth’s Theorem is still
true (by a compactness argument).
However, the hypothesis that there is a finite bound on the sizes of
the antichains cannot be dropped.
The covering number of P , denoted cov(P), is the smallest
number of chains needed to cover P .

Theorem (Perles, 1963)
Let κ be an infinite cardinal. Consider the poset
[κ]2 := {〈α, β〉 : α < β < κ} ordered by 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ
and β ≤ δ. Then [κ]2 has no infinite antichains but cov([κ]2) = κ.

Posets with no infinite antichains are sometimes called FAC posets.



If P is infinite but w(P) < ℵ0, then Dilworth’s Theorem is still
true (by a compactness argument).
However, the hypothesis that there is a finite bound on the sizes of
the antichains cannot be dropped.
The covering number of P , denoted cov(P), is the smallest
number of chains needed to cover P .

Theorem (Perles, 1963)
Let κ be an infinite cardinal. Consider the poset
[κ]2 := {〈α, β〉 : α < β < κ} ordered by 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ
and β ≤ δ. Then [κ]2 has no infinite antichains but cov([κ]2) = κ.
Posets with no infinite antichains are sometimes called FAC posets.



Proof of Perles’s Theorem.

Let A ⊆ [κ]2 be an antichain. Note that for every α ∈ dom(A)
there exists a unique β < κ with 〈α, β〉 ∈ A. So, A is a partial
function κ ⇀ κ. If α1, α2 ∈ dom(A) and α1 < α2, then
A(α1) > A(α2) because A is an antichain. By well-foundedness, A
is finite.
For the second half, suppose λ < κ and [κ]2 =

⋃
i<λ Ci . Fix

ζ < λ+. By 𐇯, there exists i(ζ) < λ such that

|{ξ < λ+ : 〈ζ, ξ〉 ∈ Ci(ζ)}| = λ+. (∗)

Applying 𐇯 again, we can find ζ1 < ζ2 < λ+ such that
i(ζ1) = i(ζ2) =: i∗. By (∗), there exists ξ2 < λ+ such that
〈ζ2, ξ2〉 ∈ Ci∗ . By (∗) again, there exists ξ1 > ξ2 with
〈ζ1, ξ1〉 ∈ Ci∗ . As 〈ζ1, ξ1〉 and 〈ζ2, ξ2〉 are incomparable, Ci∗ is not
a chain.
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In some sense, Perles’ example is the only one:

Theorem (Abraham-Pouzet, 2023)
Let ν be an uncountable cardinal and P an FAC poset.

1. If ν is a successor cardinal, then cov(P) ≥ ν if and only if
either P or P∗ (the dual of P) contains a copy of [ν]2.

2. If ν is an uncountable limit cardinal, then cov(P) ≥ ν if and
only if either P or P∗ contains a partial order Q of the form∑

a∈C Qa, where C is a chain of cardinality cf(ν), Qa ∼= [κ+a ]
2

and 〈κa : a ∈ C〉 is a family of pairwise distinct cardinals that
satisfies supa∈C κa = ν.

Question: Can we find a (small) basis for the class of posets in
(2)?
Recall that, if A is a class of structures, a basis for A is a subclass
B ⊆ A such that for every A ∈ A there exists B ∈ B with B ≤ A,
i.e. B embeds into A.
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a∈C Qa, where C is a chain of cardinality cf(ν), Qa ∼= [κ+a ]
2

and 〈κa : a ∈ C〉 is a family of pairwise distinct cardinals that
satisfies supa∈C κa = ν.

Question: Can we find a (small) basis for the class of posets in
(2)?
Recall that, if A is a class of structures, a basis for A is a subclass
B ⊆ A such that for every A ∈ A there exists B ∈ B with B ≤ A,
i.e. B embeds into A.



Suppose P =
∑

x∈X [κx ]
2 and Q =

∑
y∈Y [λy ]

2, with X and Y
chains and x 7→ κx , y 7→ λy injective.

A sufficient condition for P ≤ Q:

Lemma
Suppose there exists an order embedding ϕ : X → Y such that for
all x ∈ X, κx ≤ λϕ(x). Then P ≤ Q.

Proof.
Send a point in the block [κx ]

2 to “itself” in the block [λϕ(x)]
2.

In fact, this is somewhat reversible:

Lemma
P ≤ Q if and only if there exists a weakly order preserving map
ϕ : X → Y such that, for all y ∈ Y ,

∑
x∈ϕ−1{y} κx ≤ λy . Here,

∑
is the lexicographic sum and ≤ denotes embeddability.
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A word on the proof

Key point: if [κ]2 = A ∪ B with A × B 6= ∅ and a < b for all a ∈ A
and b ∈ B, then A = {〈0, 1〉} or A = {〈0, 1〉, 〈0, 2〉}.
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2 6= ∅}.

By the key point, |Eψ(x)| ≤ 3.
The map ϕ : X → Y defined by ϕ(x) := max(Eψ(x)) has the
desired properties.
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Returning to the sufficient condition, by composing the map
x 7→ κx with ℵ−1, we are led to consider the following category:

I Objects are pairs (X , f ), where X is a linear order and
f : X → ON is an injection.

I An arrow (X , f ) → (Y , g) is a strictly order preserving
function ϕ : X → Y such that f (x) ≤ g(ϕ(x)).

Such a pair (X , f ) is called a “labelled set”. The existence of an
arrow (X , f ) → (Y , g) is denoted by (X , f ) ≤ (Y , g).
Question: When does (X , f ) ≤ (Y , g)?
Goal: Extend the theory of embeddability of uncountable linear
orderings to the labelled context.
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The ℵ1-dense case

Recall that a set A ⊆ R is ℵ1-dense iff it meets every non-empty
interval of R in ℵ1-many points.

Theorem (Baumgartner)
It is consistent that any two ℵ1-dense sets of reals are order
isomorphic.
We can obtain a version of Baumgartner’s Theorem for the
labelled setting:

Theorem (M.)
It is consistent that for any two labelled sets (A, f ), (B, g) with A
and B ℵ1-dense sets of reals, (A, f ) ≤ (B, g), i.e. there exists
ϕ : A → B order preserving such that f (x) ≤ g(ϕ(x)) for all
x ∈ A. Also, PFA implies this.
In any such model, the family of posets of the form

∑
x∈X [κx ]

2

with X ⊆ R uncountable and x 7→ κx injective has a basis of size 1.
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Proof idea

A first attempt:

Let P be the poset of finite order-preserving partial functions
p : A ⇀ B such that f (x) < g(p(x)) for all x ∈ dom(p).
, P forces an order embedding (A, f ) → (B, g), because the

sets {p ∈ P : a ∈ dom(p)} are dense in P for all a ∈ A.
/ P does not have the ccc. For example, given a ∈ A, the set

{{〈a, b〉} : b ∈ B ∧ f (a) < g(b)}

is an uncountable antichain.
A P collapses ω1.
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Proof idea continued

To fix this, we need to find a subposet P∗ of P which is sufficiently
rich (it has enough dense sets), but is not too big (it has the ccc).

We follow Baumgartner’s argument: use CH to enumerate⋃
n∈ω[Rn]≤ℵ0 in type ω1, then diagonalize against this enumeration

so as to stop countable subsets from growing into uncountable
antichains.

Remark
The key point at which the proof differs from Baumgartner’s, and
where labels make an appearance, is in showing that the set
{p ∈ P∗ : a ∈ dom(p)} is dense in P∗ for every a ∈ A.

Theorem
Assume CH. Let (A, f ) and (B, g) be labelled sets with A and B
ℵ1-dense sets of reals. Then there is a ccc poset which forces an
embedding (A, f ) ≤ (B, g).
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