Labelled Sets

Pedro Marun Institute of Mathematics, Czech Academy of Sciences

January 26 2025

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $m \in \omega$, then an obvious obstruction to P containing an antichain of size m + 1 is that P is a union of m many chains.

If $m \in \omega$, then an obvious obstruction to P containing an antichain of size m + 1 is that P is a union of m many chains. In fact, this is the only possible obstruction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If $m \in \omega$, then an obvious obstruction to P containing an antichain of size m + 1 is that P is a union of m many chains. In fact, this is the only possible obstruction:

Theorem (Dilworth, 1950)

Let P be a finite poset. Then P is the union of w(P) many chains, where $w(P) = \sup\{|A| : A \subseteq P \text{ is an antichain}\}$ is the width of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If $m \in \omega$, then an obvious obstruction to P containing an antichain of size m + 1 is that P is a union of m many chains. In fact, this is the only possible obstruction:

Theorem (Dilworth, 1950)

Let P be a finite poset. Then P is the union of w(P) many chains, where $w(P) = \sup\{|A| : A \subseteq P \text{ is an antichain}\}$ is the width of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof without words.

If $m \in \omega$, then an obvious obstruction to P containing an antichain of size m + 1 is that P is a union of m many chains. In fact, this is the only possible obstruction:

Theorem (Dilworth, 1950)

Let P be a finite poset. Then P is the union of w(P) many chains, where $w(P) = \sup\{|A| : A \subseteq P \text{ is an antichain}\}$ is the width of P.

Proof without words.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If P is infinite but $w(P) < \aleph_0$, then Dilworth's Theorem is still true (by a compactness argument). However, the hypothesis that there is a finite bound on the sizes of the antichains cannot be dropped.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If *P* is infinite but $w(P) < \aleph_0$, then Dilworth's Theorem is still true (by a compactness argument). However, the hypothesis that there is a finite bound on the sizes of the antichains cannot be dropped. The accurate purchase of *P* denoted ext(P) is the smallest

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The *covering number* of P, denoted cov(P), is the smallest number of chains needed to cover P.

However, the hypothesis that there is a finite bound on the sizes of the antichains cannot be dropped.

The *covering number* of P, denoted cov(P), is the smallest number of chains needed to cover P.

Theorem (Perles, 1963)

Let κ be an infinite cardinal. Consider the poset $[\kappa]^2 := \{ \langle \alpha, \beta \rangle : \alpha < \beta < \kappa \}$ ordered by $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle$ iff $\alpha \leq \gamma$ and $\beta \leq \delta$.

However, the hypothesis that there is a finite bound on the sizes of the antichains cannot be dropped.

The *covering number* of P, denoted cov(P), is the smallest number of chains needed to cover P.

Theorem (Perles, 1963)

Let κ be an infinite cardinal. Consider the poset $[\kappa]^2 := \{ \langle \alpha, \beta \rangle : \alpha < \beta < \kappa \}$ ordered by $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle$ iff $\alpha \leq \gamma$ and $\beta \leq \delta$. Then $[\kappa]^2$ has no infinite antichains but $\operatorname{cov}([\kappa]^2) = \kappa$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

However, the hypothesis that there is a finite bound on the sizes of the antichains cannot be dropped.

The *covering number* of P, denoted cov(P), is the smallest number of chains needed to cover P.

Theorem (Perles, 1963)

Let κ be an infinite cardinal. Consider the poset $[\kappa]^2 := \{ \langle \alpha, \beta \rangle : \alpha < \beta < \kappa \}$ ordered by $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle$ iff $\alpha \leq \gamma$ and $\beta \leq \delta$. Then $[\kappa]^2$ has no infinite antichains but $\operatorname{cov}([\kappa]^2) = \kappa$.

Posets with no infinite antichains are sometimes called FAC posets.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of Perles's Theorem. Let $A \subseteq [\kappa]^2$ be an antichain.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \operatorname{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$.

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$. Fix

 $\zeta < \lambda^+.$

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$. Fix $\zeta < \lambda^+$. By $\overset{\circ}{\Longrightarrow}$, there exists $i(\zeta) < \lambda$ such that

$$|\{\xi < \lambda^+ : \langle \zeta, \xi \rangle \in C_{i(\zeta)}\}| = \lambda^+.$$
(*)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$. Fix $\zeta < \lambda^+$. By \Im , there exists $i(\zeta) < \lambda$ such that

$$|\{\xi < \lambda^+ : \langle \zeta, \xi \rangle \in C_{i(\zeta)}\}| = \lambda^+.$$
(*)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applying $\overset{\sim}{\searrow}$ again, we can find $\zeta_1 < \zeta_2 < \lambda^+$ such that $i(\zeta_1) = i(\zeta_2) =: i^*$.

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$. Fix $\zeta < \lambda^+$. By \Im , there exists $i(\zeta) < \lambda$ such that

$$|\{\xi < \lambda^+ : \langle \zeta, \xi \rangle \in C_{i(\zeta)}\}| = \lambda^+.$$
(*)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applying \Im again, we can find $\zeta_1 < \zeta_2 < \lambda^+$ such that $i(\zeta_1) = i(\zeta_2) =: i^*$. By (*), there exists $\xi_2 < \lambda^+$ such that $\langle \zeta_2, \xi_2 \rangle \in C_{i^*}$.

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$. Fix $\zeta < \lambda^+$. By is, there exists $i(\zeta) < \lambda$ such that

$$|\{\xi < \lambda^+ : \langle \zeta, \xi \rangle \in \mathcal{C}_{i(\zeta)}\}| = \lambda^+.$$
(*)

(日)((1))

Applying $\overset{\mathbb{C}}{\Longrightarrow}$ again, we can find $\zeta_1 < \zeta_2 < \lambda^+$ such that $i(\zeta_1) = i(\zeta_2) =: i^*$. By (*), there exists $\xi_2 < \lambda^+$ such that $\langle \zeta_2, \xi_2 \rangle \in C_{i^*}$. By (*) again, there exists $\xi_1 > \xi_2$ with $\langle \zeta_1, \xi_1 \rangle \in C_{i^*}$.

Let $A \subseteq [\kappa]^2$ be an antichain. Note that for every $\alpha \in \text{dom}(A)$ there exists a unique $\beta < \kappa$ with $\langle \alpha, \beta \rangle \in A$. So, A is a partial function $\kappa \rightharpoonup \kappa$. If $\alpha_1, \alpha_2 \in \text{dom}(A)$ and $\alpha_1 < \alpha_2$, then $A(\alpha_1) > A(\alpha_2)$ because A is an antichain. By well-foundedness, Ais finite.

For the second half, suppose $\lambda < \kappa$ and $[\kappa]^2 = \bigcup_{i < \lambda} C_i$. Fix $\zeta < \lambda^+$. By \Im , there exists $i(\zeta) < \lambda$ such that

$$|\{\xi < \lambda^+ : \langle \zeta, \xi \rangle \in C_{i(\zeta)}\}| = \lambda^+.$$
(*)

Applying \Im again, we can find $\zeta_1 < \zeta_2 < \lambda^+$ such that $i(\zeta_1) = i(\zeta_2) =: i^*$. By (*), there exists $\xi_2 < \lambda^+$ such that $\langle \zeta_2, \xi_2 \rangle \in C_{i^*}$. By (*) again, there exists $\xi_1 > \xi_2$ with $\langle \zeta_1, \xi_1 \rangle \in C_{i^*}$. As $\langle \zeta_1, \xi_1 \rangle$ and $\langle \zeta_2, \xi_2 \rangle$ are incomparable, C_{i^*} is not a chain.

<ロト < 団ト < 団ト < 団ト < 団ト 三 のへで</p>

Theorem (Abraham-Pouzet, 2023)

Let ν be an uncountable cardinal and P an FAC poset.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem (Abraham-Pouzet, 2023)

Let ν be an uncountable cardinal and P an FAC poset.

1. If ν is a successor cardinal, then $cov(P) \ge \nu$ if and only if either P or P^{*} (the dual of P) contains a copy of $[\nu]^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Abraham-Pouzet, 2023)

Let ν be an uncountable cardinal and P an FAC poset.

- If ν is a successor cardinal, then cov(P) ≥ ν if and only if either P or P* (the dual of P) contains a copy of [ν]².
- If ν is an uncountable limit cardinal, then cov(P) ≥ ν if and only if either P or P* contains a partial order Q of the form ∑_{a∈C} Q_a, where C is a chain of cardinality cf(ν), Q_a ≅ [κ_a⁺]² and ⟨κ_a : a ∈ C⟩ is a family of pairwise distinct cardinals that satisfies sup_{a∈C} κ_a = ν.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Abraham-Pouzet, 2023)

Let ν be an uncountable cardinal and P an FAC poset.

- If ν is a successor cardinal, then cov(P) ≥ ν if and only if either P or P* (the dual of P) contains a copy of [ν]².
- 2. If ν is an uncountable limit cardinal, then $\operatorname{cov}(P) \ge \nu$ if and only if either P or P* contains a partial order Q of the form $\sum_{a \in C} Q_a$, where C is a chain of cardinality $cf(\nu)$, $Q_a \cong [\kappa_a^+]^2$ and $\langle \kappa_a : a \in C \rangle$ is a family of pairwise distinct cardinals that satisfies $\sup_{a \in C} \kappa_a = \nu$.

Question: Can we find a (small) basis for the class of posets in (2)?

Theorem (Abraham-Pouzet, 2023)

Let ν be an uncountable cardinal and P an FAC poset.

- If ν is a successor cardinal, then cov(P) ≥ ν if and only if either P or P* (the dual of P) contains a copy of [ν]².
- If ν is an uncountable limit cardinal, then cov(P) ≥ ν if and only if either P or P* contains a partial order Q of the form ∑_{a∈C} Q_a, where C is a chain of cardinality cf(ν), Q_a ≅ [κ_a⁺]²
 and ⟨κ_a : a ∈ C⟩ is a family of pairwise distinct cardinals that
 satisfies sup_{a∈C} κ_a = ν.

Question: Can we find a (small) basis for the class of posets in (2)? Recall that, if \mathcal{A} is a class of structures, a *basis* for \mathcal{A} is a subclass $\mathcal{B} \subseteq \mathcal{A}$ such that for every $A \in \mathcal{A}$ there exists $B \in \mathcal{B}$ with $B \leq A$, i.e. B embeds into A. Suppose $P = \sum_{x \in X} [\kappa_x]^2$ and $Q = \sum_{y \in Y} [\lambda_y]^2$, with X and Y chains and $x \mapsto \kappa_x$, $y \mapsto \lambda_y$ injective.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Suppose $P = \sum_{x \in X} [\kappa_x]^2$ and $Q = \sum_{y \in Y} [\lambda_y]^2$, with X and Y chains and $x \mapsto \kappa_x$, $y \mapsto \lambda_y$ injective. A sufficient condition for $P \leq Q$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose $P = \sum_{x \in X} [\kappa_x]^2$ and $Q = \sum_{y \in Y} [\lambda_y]^2$, with X and Y chains and $x \mapsto \kappa_x$, $y \mapsto \lambda_y$ injective. A sufficient condition for $P \leq Q$:

Lemma

Suppose there exists an order embedding $\varphi : X \to Y$ such that for all $x \in X$, $\kappa_x \leq \lambda_{\varphi(x)}$. Then $P \leq Q$.

Suppose $P = \sum_{x \in X} [\kappa_x]^2$ and $Q = \sum_{y \in Y} [\lambda_y]^2$, with X and Y chains and $x \mapsto \kappa_x$, $y \mapsto \lambda_y$ injective. A sufficient condition for $P \leq Q$:

Lemma

Suppose there exists an order embedding $\varphi : X \to Y$ such that for all $x \in X$, $\kappa_x \leq \lambda_{\varphi(x)}$. Then $P \leq Q$.

Proof.

Send a point in the block $[\kappa_x]^2$ to "itself" in the block $[\lambda_{\varphi(x)}]^2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Suppose $P = \sum_{x \in X} [\kappa_x]^2$ and $Q = \sum_{y \in Y} [\lambda_y]^2$, with X and Y chains and $x \mapsto \kappa_x$, $y \mapsto \lambda_y$ injective. A sufficient condition for $P \leq Q$:

Lemma

Suppose there exists an order embedding $\varphi : X \to Y$ such that for all $x \in X$, $\kappa_x \leq \lambda_{\varphi(x)}$. Then $P \leq Q$.

Proof.

Send a point in the block $[\kappa_x]^2$ to "itself" in the block $[\lambda_{\varphi(x)}]^2$. \Box In fact, this is somewhat reversible:

Suppose $P = \sum_{x \in X} [\kappa_x]^2$ and $Q = \sum_{y \in Y} [\lambda_y]^2$, with X and Y chains and $x \mapsto \kappa_x$, $y \mapsto \lambda_y$ injective. A sufficient condition for $P \leq Q$:

Lemma

Suppose there exists an order embedding $\varphi : X \to Y$ such that for all $x \in X$, $\kappa_x \leq \lambda_{\varphi(x)}$. Then $P \leq Q$.

Proof.

Send a point in the block $[\kappa_x]^2$ to "itself" in the block $[\lambda_{\varphi(x)}]^2$. \Box In fact, this is somewhat reversible:

Lemma

 $P \leq Q$ if and only if there exists a weakly order preserving map $\varphi: X \to Y$ such that, for all $y \in Y$, $\sum_{x \in \varphi^{-1}\{y\}} \kappa_x \leq \lambda_y$. Here, \sum is the lexicographic sum and \leq denotes embeddability.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 1: A contains a point whose first coordinate is non-zero.

- ロ ト - 4 回 ト - 4 □

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 1: A contains a point whose first coordinate is non-zero.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 1: A contains a point whose first coordinate is non-zero.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 1: A contains a point whose first coordinate is non-zero.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 1: A contains a point whose first coordinate is non-zero.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 2: A contains a point whose second coordinate is at least 3.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. A = redB = blue

Case 2: A contains a point whose second coordinate is at least 3.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. If $\psi : \sum_{x \in X} [\kappa_x]^2 \to \sum_{y \in Y} [\lambda_y]^2$ is an embedding, let

$$E_{\psi}(x) = \{ y \in Y : [\lambda_y]^2 \cap \psi^{"}[\kappa_x]^2 \neq \emptyset \}.$$

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. If $\psi : \sum_{x \in X} [\kappa_x]^2 \to \sum_{y \in Y} [\lambda_y]^2$ is an embedding, let $E_{\psi}(x) = \{y \in Y : [\lambda_y]^2 \cap \psi^{"}[\kappa_x]^2 \neq \emptyset\}.$

By the key point, $|E_{\psi}(x)| \leq 3$.

Key point: if $[\kappa]^2 = A \cup B$ with $A \times B \neq \emptyset$ and a < b for all $a \in A$ and $b \in B$, then $A = \{\langle 0, 1 \rangle\}$ or $A = \{\langle 0, 1 \rangle, \langle 0, 2 \rangle\}$. If $\psi : \sum_{x \in X} [\kappa_x]^2 \to \sum_{y \in Y} [\lambda_y]^2$ is an embedding, let

$$\mathsf{E}_{\psi}(\mathsf{x}) = \{ \mathsf{y} \in \mathsf{Y} : [\lambda_{\mathsf{y}}]^2 \cap \psi^{``}[\kappa_{\mathsf{x}}]^2 \neq \emptyset \}.$$

By the key point, $|E_{\psi}(x)| \leq 3$. The map $\varphi: X \to Y$ defined by $\varphi(x) := \max(E_{\psi}(x))$ has the desired properties.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Objects are pairs (X, f), where X is a linear order and f : X → ON is an injection.

- Objects are pairs (X, f), where X is a linear order and f : X → ON is an injection.
- An arrow $(X, f) \rightarrow (Y, g)$ is a strictly order preserving function $\varphi : X \rightarrow Y$ such that $f(x) \leq g(\varphi(x))$.

- Objects are pairs (X, f), where X is a linear order and f : X → ON is an injection.
- An arrow $(X, f) \rightarrow (Y, g)$ is a strictly order preserving function $\varphi : X \rightarrow Y$ such that $f(x) \leq g(\varphi(x))$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Such a pair (X, f) is called a "labelled set".

- Objects are pairs (X, f), where X is a linear order and f : X → ON is an injection.
- An arrow $(X, f) \rightarrow (Y, g)$ is a strictly order preserving function $\varphi : X \rightarrow Y$ such that $f(x) \leq g(\varphi(x))$.

Such a pair (X, f) is called a "labelled set". The existence of an arrow $(X, f) \rightarrow (Y, g)$ is denoted by $(X, f) \leq (Y, g)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Objects are pairs (X, f), where X is a linear order and f : X → ON is an injection.
- An arrow $(X, f) \rightarrow (Y, g)$ is a strictly order preserving function $\varphi : X \rightarrow Y$ such that $f(x) \leq g(\varphi(x))$.

Such a pair (X, f) is called a "labelled set". The existence of an arrow $(X, f) \rightarrow (Y, g)$ is denoted by $(X, f) \leq (Y, g)$. **Question:** When does $(X, f) \leq (Y, g)$?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Objects are pairs (X, f), where X is a linear order and f : X → ON is an injection.
- ▶ An arrow $(X, f) \rightarrow (Y, g)$ is a strictly order preserving function $\varphi : X \rightarrow Y$ such that $f(x) \leq g(\varphi(x))$.

Such a pair (X, f) is called a "labelled set". The existence of an arrow $(X, f) \rightarrow (Y, g)$ is denoted by $(X, f) \leq (Y, g)$. **Question:** When does $(X, f) \leq (Y, g)$?

Goal: Extend the theory of embeddability of uncountable linear orderings to the labelled context.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recall that a set $A \subseteq \mathbb{R}$ is \aleph_1 -dense iff it meets every non-empty interval of \mathbb{R} in \aleph_1 -many points.

Recall that a set $A \subseteq \mathbb{R}$ is \aleph_1 -dense iff it meets every non-empty interval of \mathbb{R} in \aleph_1 -many points.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Baumgartner)

It is consistent that any two \aleph_1 -dense sets of reals are order isomorphic.

Recall that a set $A \subseteq \mathbb{R}$ is \aleph_1 -dense iff it meets every non-empty interval of \mathbb{R} in \aleph_1 -many points.

Theorem (Baumgartner)

It is consistent that any two \aleph_1 -dense sets of reals are order isomorphic.

We can obtain a version of Baumgartner's Theorem for the labelled setting:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recall that a set $A \subseteq \mathbb{R}$ is \aleph_1 -dense iff it meets every non-empty interval of \mathbb{R} in \aleph_1 -many points.

Theorem (Baumgartner)

It is consistent that any two \aleph_1 -dense sets of reals are order isomorphic.

We can obtain a version of Baumgartner's Theorem for the labelled setting:

Theorem (M.)

It is consistent that for any two labelled sets (A, f), (B, g) with A and $B \aleph_1$ -dense sets of reals, $(A, f) \leq (B, g)$, i.e. there exists $\varphi : A \rightarrow B$ order preserving such that $f(x) \leq g(\varphi(x))$ for all $x \in A$.

Recall that a set $A \subseteq \mathbb{R}$ is \aleph_1 -dense iff it meets every non-empty interval of \mathbb{R} in \aleph_1 -many points.

Theorem (Baumgartner)

It is consistent that any two \aleph_1 -dense sets of reals are order isomorphic.

We can obtain a version of Baumgartner's Theorem for the labelled setting:

Theorem (M.)

It is consistent that for any two labelled sets (A, f), (B, g) with A and $B \aleph_1$ -dense sets of reals, $(A, f) \leq (B, g)$, i.e. there exists $\varphi : A \rightarrow B$ order preserving such that $f(x) \leq g(\varphi(x))$ for all $x \in A$. Also, PFA implies this.

Recall that a set $A \subseteq \mathbb{R}$ is \aleph_1 -dense iff it meets every non-empty interval of \mathbb{R} in \aleph_1 -many points.

Theorem (Baumgartner)

It is consistent that any two \aleph_1 -dense sets of reals are order isomorphic.

We can obtain a version of Baumgartner's Theorem for the labelled setting:

Theorem (M.)

It is consistent that for any two labelled sets (A, f), (B, g) with Aand $B \aleph_1$ -dense sets of reals, $(A, f) \leq (B, g)$, i.e. there exists $\varphi : A \rightarrow B$ order preserving such that $f(x) \leq g(\varphi(x))$ for all $x \in A$. Also, PFA implies this. In any such model, the family of posets of the form $\sum_{x \in X} [\kappa_x]^2$ with $X \subseteq \mathbb{R}$ uncountable and $x \mapsto \kappa_x$ injective has a basis of size 1.

A first attempt:

A first attempt:

Let \mathbb{P} be the poset of finite order-preserving partial functions $p : A \rightarrow B$ such that f(x) < g(p(x)) for all $x \in \text{dom}(p)$.

A first attempt:

Let \mathbb{P} be the poset of finite order-preserving partial functions $p: A \rightarrow B$ such that f(x) < g(p(x)) for all $x \in \text{dom}(p)$.

☺ \mathbb{P} forces an order embedding $(A, f) \rightarrow (B, g)$, because the sets $\{p \in \mathbb{P} : a \in \text{dom}(p)\}$ are dense in \mathbb{P} for all $a \in A$.

A first attempt:

Let $\ensuremath{\mathbb{P}}$ be the poset of finite order-preserving partial functions

 $p : A \rightarrow B$ such that f(x) < g(p(x)) for all $x \in dom(p)$.

☺ \mathbb{P} forces an order embedding $(A, f) \rightarrow (B, g)$, because the sets $\{p \in \mathbb{P} : a \in \text{dom}(p)\}$ are dense in \mathbb{P} for all $a \in A$.

 \odot \mathbb{P} does not have the ccc.

A first attempt:

Let \mathbb{P} be the poset of finite order-preserving partial functions $p: A \rightarrow B$ such that f(x) < g(p(x)) for all $x \in \text{dom}(p)$.

- ☺ \mathbb{P} forces an order embedding $(A, f) \rightarrow (B, g)$, because the sets $\{p \in \mathbb{P} : a \in \text{dom}(p)\}$ are dense in \mathbb{P} for all $a \in A$.
- $\ensuremath{\textcircled{\sc 0}}$ $\ensuremath{\mathbb{P}}$ does not have the ccc. For example, given $a \in A$, the set

$$\{\{\langle a, b \rangle\} : b \in B \land f(a) < g(b)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is an uncountable antichain.

A first attempt:

Let \mathbb{P} be the poset of finite order-preserving partial functions $p: A \rightarrow B$ such that f(x) < g(p(x)) for all $x \in \text{dom}(p)$.

- ☺ \mathbb{P} forces an order embedding $(A, f) \rightarrow (B, g)$, because the sets $\{p \in \mathbb{P} : a \in \text{dom}(p)\}$ are dense in \mathbb{P} for all $a \in A$.
- $\ensuremath{\textcircled{\sc 0}}$ $\ensuremath{\mathbb{P}}$ does not have the ccc. For example, given $a \in A$, the set

$$\{\{\langle a, b \rangle\} : b \in B \land f(a) < g(b)\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is an uncountable antichain.

 $\mathfrak{A} \mathbb{P}$ collapses ω_1 .

Proof idea continued

To fix this, we need to find a subposet \mathbb{P}^* of \mathbb{P} which is sufficiently rich (it has enough dense sets), but is not too big (it has the ccc).

Proof idea continued

To fix this, we need to find a subposet \mathbb{P}^* of \mathbb{P} which is sufficiently rich (it has enough dense sets), but is not too big (it has the ccc). We follow Baumgartner's argument: use CH to enumerate $\bigcup_{n\in\omega} [\mathbb{R}^n]^{\leq\aleph_0}$ in type ω_1 , then diagonalize against this enumeration so as to stop countable subsets from growing into uncountable antichains.
Proof idea continued

To fix this, we need to find a subposet \mathbb{P}^* of \mathbb{P} which is sufficiently rich (it has enough dense sets), but is not too big (it has the ccc). We follow Baumgartner's argument: use CH to enumerate $\bigcup_{n\in\omega} [\mathbb{R}^n]^{\leq\aleph_0}$ in type ω_1 , then diagonalize against this enumeration so as to stop countable subsets from growing into uncountable antichains.

Remark

The key point at which the proof differs from Baumgartner's, and where labels make an appearance, is in showing that the set $\{p \in \mathbb{P}^* : a \in \text{dom}(p)\}$ is dense in \mathbb{P}^* for every $a \in A$.

Proof idea continued

To fix this, we need to find a subposet \mathbb{P}^* of \mathbb{P} which is sufficiently rich (it has enough dense sets), but is not too big (it has the ccc). We follow Baumgartner's argument: use CH to enumerate $\bigcup_{n\in\omega} [\mathbb{R}^n]^{\leq\aleph_0}$ in type ω_1 , then diagonalize against this enumeration so as to stop countable subsets from growing into uncountable antichains.

Remark

The key point at which the proof differs from Baumgartner's, and where labels make an appearance, is in showing that the set $\{p \in \mathbb{P}^* : a \in \text{dom}(p)\}$ is dense in \mathbb{P}^* for every $a \in A$.

Theorem

Assume CH. Let (A, f) and (B, g) be labelled sets with A and B \aleph_1 -dense sets of reals. Then there is a ccc poset which forces an embedding $(A, f) \leq (B, g)$.

Thank you :)