Strongly increasing sequences of functions

Chris Lambie-Hanson

Institute of Mathematics Czech Academy of Sciences

Winter School in Abstract Analysis Hejnice 31 January 2025

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Joint work with Paul Larson.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Question (Bukovský-Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question (Bukovský-Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question

Is the Chang's Conjecture variant $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ consistent?

Question (Bukovský-Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question

Is the Chang's Conjecture variant $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ consistent?

Both questions are known to have positive answers if \aleph_2 is replaced by \aleph_1 .

Question (Bukovský-Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question

Is the Chang's Conjecture variant $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ consistent?

Both questions are known to have positive answers if \aleph_2 is replaced by \aleph_1 . If $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ holds and there exists a Woodin cardinal, then there is a forcing extension via stationary tower forcing in which $(\aleph_{\omega+1})^V = \aleph_2$.

Suppose that $f, g : \omega \to \text{Ord.}$

Suppose that $f, g : \omega \to \text{Ord.}$

 For all n < ω, we say that f <_n g if f(m) < g(m) for all m ∈ ω \ n.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Suppose that $f, g : \omega \to \text{Ord.}$

- For all $n < \omega$, we say that $f <_n g$ if f(m) < g(m) for all $m \in \omega \setminus n$.
- We say that $f <^* g$ if there exists $n < \omega$ such that $f <_n g$.

Suppose that $f, g : \omega \to \text{Ord.}$

- For all $n < \omega$, we say that $f <_n g$ if f(m) < g(m) for all $m \in \omega \setminus n$.
- We say that $f <^* g$ if there exists $n < \omega$ such that $f <_n g$.

Definition

Let δ be an ordinal and $\vec{f} = \langle f_{\alpha} \mid \alpha < \delta \rangle$ a sequence of elements of ^{ω}Ord. We say that \vec{f} is *strongly increasing* if

Suppose that $f, g : \omega \to \text{Ord.}$

- For all $n < \omega$, we say that $f <_n g$ if f(m) < g(m) for all $m \in \omega \setminus n$.
- We say that $f <^* g$ if there exists $n < \omega$ such that $f <_n g$.

Definition

Let δ be an ordinal and $\vec{f} = \langle f_{\alpha} \mid \alpha < \delta \rangle$ a sequence of elements of ^{ω}Ord. We say that \vec{f} is *strongly increasing* if

1 \vec{f} is <*-increasing; and

(日) (日) (日) (日) (日) (日) (日) (日)

Suppose that $f, g : \omega \to \text{Ord.}$

- For all $n < \omega$, we say that $f <_n g$ if f(m) < g(m) for all $m \in \omega \setminus n$.
- We say that $f <^* g$ if there exists $n < \omega$ such that $f <_n g$.

Definition

Let δ be an ordinal and $\vec{f} = \langle f_{\alpha} \mid \alpha < \delta \rangle$ a sequence of elements of ^{ω}Ord. We say that \vec{f} is *strongly increasing* if

- 1 \vec{f} is <*-increasing; and
- 2 for every limit ordinal $\beta < \delta$, there is a club C_{β} in β and an $n_{\beta} < \omega$ such that $f_{\alpha} <_{n_{\beta}} f_{\beta}$ for all $\alpha \in C_{\beta}$.

1 There is a strongly increasing sequence of length ω_1 in ω_{ω} .

- 1 There is a strongly increasing sequence of length ω_1 in ${}^{\omega}\omega$.
- 2 There is a strongly increasing sequence of length $\aleph_{\omega+1}$ in $\prod_{k<\omega} \omega_k$.

- 1 There is a strongly increasing sequence of length ω_1 in ${}^{\omega}\omega$.
- 2 There is a strongly increasing sequence of length $\aleph_{\omega+1}$ in $\prod_{k<\omega}\omega_k$.
- 3 (Shelah) If $4 \le m < \omega$ and $\gamma < \omega_m$, then there is no strongly increasing sequence of length ω_m in ${}^{\omega}\gamma$.

- 1 There is a strongly increasing sequence of length ω_1 in ${}^{\omega}\omega$.
- 2 There is a strongly increasing sequence of length $\aleph_{\omega+1}$ in $\prod_{k<\omega}\omega_k$.
- 3 (Shelah) If $4 \le m < \omega$ and $\gamma < \omega_m$, then there is no strongly increasing sequence of length ω_m in ${}^{\omega}\gamma$.

Corollary

Suppose that $V \subseteq W$ are inner models of ZFC and $4 \leq m < \omega$. Then $(\aleph_{\omega+1})^V \neq (\aleph_m)^W$.

- 1 There is a strongly increasing sequence of length ω_1 in ${}^{\omega}\omega$.
- 2 There is a strongly increasing sequence of length $\aleph_{\omega+1}$ in $\prod_{k<\omega}\omega_k$.
- 3 (Shelah) If $4 \le m < \omega$ and $\gamma < \omega_m$, then there is no strongly increasing sequence of length ω_m in ${}^{\omega}\gamma$.

Corollary

Suppose that $V \subseteq W$ are inner models of ZFC and $4 \leq m < \omega$. Then $(\aleph_{\omega+1})^V \neq (\aleph_m)^W$.

Proof.

Otherwise, use (2) to fix in V a strongly increasing sequence \vec{f} in $\prod_{n < \omega} \omega_n$ of length $\aleph_{\omega+1}$.

- 1 There is a strongly increasing sequence of length ω_1 in ${}^{\omega}\omega$.
- 2 There is a strongly increasing sequence of length $\aleph_{\omega+1}$ in $\prod_{k<\omega}\omega_k$.
- 3 (Shelah) If $4 \le m < \omega$ and $\gamma < \omega_m$, then there is no strongly increasing sequence of length ω_m in ${}^{\omega}\gamma$.

Corollary

Suppose that $V \subseteq W$ are inner models of ZFC and $4 \leq m < \omega$. Then $(\aleph_{\omega+1})^V \neq (\aleph_m)^W$.

Proof.

Otherwise, use (2) to fix in V a strongly increasing sequence \vec{f} in $\prod_{n<\omega} \omega_n$ of length $\aleph_{\omega+1}$. In W, \vec{f} is a strongly increasing sequence of length ω_m in ${}^{\omega}\gamma$, where $\gamma = (\aleph_{\omega})^V < \omega_m$, contradicting (3). \Box

Motivating questions again

Question (Bukovský–Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question

Is the Chang's Conjecture variant $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ consistent?

Both questions are known to have positive answers if ω_2 is replaced by ω_1 and negative answers if it is replaced by ω_m for $4 \le m < \omega$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivating questions again

Question (Bukovský–Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question

Is the Chang's Conjecture variant $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ consistent?

Both questions are known to have positive answers if ω_2 is replaced by ω_1 and negative answers if it is replaced by ω_m for $4 \le m < \omega$. A positive answer to either question would entail the consistency of the existence of a strongly increasing sequence of length ω_2 in ω_1 .

Motivating questions again

Question (Bukovský–Copláková-Hartová)

Can there exist a pair of inner models of ZFC $V \subseteq W$ such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$?

Question

Is the Chang's Conjecture variant $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_2, \aleph_1)$ consistent?

Both questions are known to have positive answers if ω_2 is replaced by ω_1 and negative answers if it is replaced by ω_m for $4 \le m < \omega$. A positive answer to either question would entail the consistency of the existence of a strongly increasing sequence of length ω_2 in ω_1 .

Question

Is there consistently a strongly increasing sequence of length ω_2 in ${}^{\omega}\omega_1$ (or ${}^{\omega}\omega)$?

An answer

An answer

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Theorem (Larson–LH)

Suppose that $V = L(\mathbb{R})$ and AD holds (or $V = L(A, \mathbb{R})$ for some $A \subseteq {}^{\omega}\omega$ and AD⁺ holds). Then there is a forcing extension satisfying 'ZFC+ there exists a strongly increasing sequence of length ω_2 in ${}^{\omega}\omega$ ".

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{max} forcing.

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

M is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

- M is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};
- F is, in M, a (very) strongly increasing sequence of functions in ^ωω whose length is a successor ordinal less than ω₂^M;

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

- *M* is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};
- F is, in M, a (very) strongly increasing sequence of functions in ^ωω whose length is a successor ordinal less than ω₂^M;
- $a \in \mathcal{P}(\omega_1)^M$ is such that, for some $x \in \mathcal{P}(\omega)^M$, we have $\omega_1^M = \omega_1^{L[a,x]}$.

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

- M is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};
- F is, in M, a (very) strongly increasing sequence of functions in ^ωω whose length is a successor ordinal less than ω₂^M;
- $a \in \mathcal{P}(\omega_1)^M$ is such that, for some $x \in \mathcal{P}(\omega)^M$, we have $\omega_1^M = \omega_1^{L[a,x]}$.

We set (N, H, b) < (M, F, a) if there exists an iteration $j : (M, NS_{\omega_1}^M) \rightarrow (M^*, NS_{\omega_1}^{M^*})$ such that $j \in N$,

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

- M is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};
- F is, in M, a (very) strongly increasing sequence of functions in ^ωω whose length is a successor ordinal less than ω₂^M;
- $a \in \mathcal{P}(\omega_1)^M$ is such that, for some $x \in \mathcal{P}(\omega)^M$, we have $\omega_1^M = \omega_1^{L[a,x]}$.

We set (N, H, b) < (M, F, a) if there exists an iteration $j : (M, NS_{\omega_1}^M) \rightarrow (M^*, NS_{\omega_1}^{M^*})$ such that $j \in N$, j(a) = b,

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

- M is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};
- F is, in M, a (very) strongly increasing sequence of functions in ^ωω whose length is a successor ordinal less than ω₂^M;
- $a \in \mathcal{P}(\omega_1)^M$ is such that, for some $x \in \mathcal{P}(\omega)^M$, we have $\omega_1^M = \omega_1^{L[a,x]}$.

We set (N, H, b) < (M, F, a) if there exists an iteration $j : (M, NS_{\omega_1}^M) \rightarrow (M^*, NS_{\omega_1}^{M^*})$ such that $j \in N, j(a) = b$, $NS_{\omega_1}^{M^*} = NS_{\omega_1}^N \cap M^*$,

We force over $L(\mathbb{R})$ with a variant \mathbb{P} of Woodin's \mathbb{P}_{\max} forcing. More precisely, conditions are all triples of the form (M, F, a) such that

- M is a countable transitive model of ZFC + MA_{ℵ1} that is iterable with respect to NS^M_{ω1};
- F is, in M, a (very) strongly increasing sequence of functions in ^ωω whose length is a successor ordinal less than ω₂^M;
- $a \in \mathcal{P}(\omega_1)^M$ is such that, for some $x \in \mathcal{P}(\omega)^M$, we have $\omega_1^M = \omega_1^{L[a,x]}$.

We set (N, H, b) < (M, F, a) if there exists an iteration $j : (M, NS_{\omega_1}^M) \to (M^*, NS_{\omega_1}^{M^*})$ such that $j \in N$, j(a) = b, $NS_{\omega_1}^{M^*} = NS_{\omega_1}^N \cap M^*$, and j(F) is an initial segment of H.

 For each x ∈ H(ω₁), there are densely many conditions (M, F, a) ∈ P such that x ∈ H(ω₁)^M.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

 For each x ∈ H(ω₁), there are densely many conditions (M, F, a) ∈ P such that x ∈ H(ω₁)^M.

• \mathbb{P} is countably closed.

 For each x ∈ H(ω₁), there are densely many conditions (M, F, a) ∈ ℙ such that x ∈ H(ω₁)^M.

- \mathbb{P} is countably closed.
- Let G be \mathbb{P} -generic over V. Then

 For each x ∈ H(ω₁), there are densely many conditions (M, F, a) ∈ ℙ such that x ∈ H(ω₁)^M.

- \mathbb{P} is countably closed.
- Let G be \mathbb{P} -generic over V. Then

•
$$V[G] \models \mathsf{ZFC} + 2^{\aleph_0} = \aleph_2$$

- For each x ∈ H(ω₁), there are densely many conditions (M, F, a) ∈ ℙ such that x ∈ H(ω₁)^M.
- \mathbb{P} is countably closed.
- Let G be \mathbb{P} -generic over V. Then
 - $V[G] \models \mathsf{ZFC} + 2^{\aleph_0} = \aleph_2$.
 - Let $A_G = \bigcup \{a \mid (M, F, a) \in G\}$. Then for each $p = (M, F, a) \in G$, there is a unique iteration $j_{p,G}$ of $(M, NS^M_{\omega_1})$ sending a to A_G .

- For each x ∈ H(ω₁), there are densely many conditions (M, F, a) ∈ ℙ such that x ∈ H(ω₁)^M.
- \mathbb{P} is countably closed.
- Let G be \mathbb{P} -generic over V. Then
 - $V[G] \models \mathsf{ZFC} + 2^{\aleph_0} = \aleph_2$.
 - Let $A_G = \bigcup \{a \mid (M, F, a) \in G\}$. Then for each $p = (M, F, a) \in G$, there is a unique iteration $j_{p,G}$ of $(M, NS^M_{\omega_1})$ sending a to A_G .
 - ∪{j_{p,G}(F) | p = (M, F, a) ∈ G} is a (very) strongly increasing sequence in ^ωω of length ω₂.

More questions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Question

Does the existence of a strongly increasing sequence in ${}^{\omega}\omega$ of length ω_2 have any large cardinal strength?

More questions

Question

Does the existence of a strongly increasing sequence in ${}^{\omega}\omega$ of length ω_2 have any large cardinal strength?

Question

Is there consistently a strongly increasing sequence in $^{\omega}\omega$ of length $\omega_{3}?$

Thank you!

・ロト・日本・モート ヨー うべつ