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Recap

The goal of the series has been to explain how to produce
real-valued equidecompositions of nice sets A and B like the disk
and the square.

In the first talk, we showed that this is equivalent to finding a flow
in an suitable graph.

Flows can be found assuming the convergence of some averaging
procedures in an action of translations on Tk .

Last time we bounded averages of functions D(f , µ) in terms of
D(µ).

Today we will show instances of how to bound D(µ) for different
choices of actions and µ.
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The golden ratio

Consider the following sequence of continued fractions.
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The terms of the sequence satisfy the recurrence an = 1
1+an−1

.

Assuming the limit L exists, it satisfies the equation L2 + L− 1 = 0

and using the condition a1 = 1, we get L = −1+
√
5

2 .

Note that L = 1/φ where φ is the golden ratio.
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Fibonacci numbers

Simplifying the above sequence another way gives an = Fn−1

Fn
where

Fn is the Fibonacci sequence.

It follows that

lim
n→∞

Fn−1
Fn

=
1

φ

We can actually show that this converges very quickly.∣∣∣ 1
φ
− Fn−1

Fn

∣∣∣ ≤ 1

Fn+1Fn
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Discrepancy of measures related to 1/φ

Let µ be the uniform probability measure on the set 1/φ, . . . ,Fn/φ
in T.

Since Fn−1 and Fn are coprime the numbers kFn−1

Fn
are distinct and

by our estimate above each k/φ is within 1/Fn+1 of kFn−1

Fn
.

So for [a, b) ⊆ T, it follows that

|(b − a)− |{1/φ, . . . ,Fn/φ}|/Fn| ≤ 2/Fn

Estimates where FN is replaced by an arbitrary natural number are
also possible.

These estimates are not enough to get the desired convergence of
the series of averages.



Discrepancy of measures related to 1/φ

Let µ be the uniform probability measure on the set 1/φ, . . . ,Fn/φ
in T.

Since Fn−1 and Fn are coprime the numbers kFn−1

Fn
are distinct and

by our estimate above each k/φ is within 1/Fn+1 of kFn−1

Fn
.

So for [a, b) ⊆ T, it follows that

|(b − a)− |{1/φ, . . . ,Fn/φ}|/Fn| ≤ 2/Fn

Estimates where FN is replaced by an arbitrary natural number are
also possible.

These estimates are not enough to get the desired convergence of
the series of averages.



Discrepancy of measures related to 1/φ

Let µ be the uniform probability measure on the set 1/φ, . . . ,Fn/φ
in T.

Since Fn−1 and Fn are coprime the numbers kFn−1

Fn
are distinct and

by our estimate above each k/φ is within 1/Fn+1 of kFn−1

Fn
.

So for [a, b) ⊆ T, it follows that

|(b − a)− |{1/φ, . . . ,Fn/φ}|/Fn| ≤ 2/Fn

Estimates where FN is replaced by an arbitrary natural number are
also possible.

These estimates are not enough to get the desired convergence of
the series of averages.



Discrepancy of measures related to 1/φ

Let µ be the uniform probability measure on the set 1/φ, . . . ,Fn/φ
in T.

Since Fn−1 and Fn are coprime the numbers kFn−1

Fn
are distinct and

by our estimate above each k/φ is within 1/Fn+1 of kFn−1

Fn
.

So for [a, b) ⊆ T, it follows that

|(b − a)− |{1/φ, . . . ,Fn/φ}|/Fn| ≤ 2/Fn

Estimates where FN is replaced by an arbitrary natural number are
also possible.

These estimates are not enough to get the desired convergence of
the series of averages.



The Erdös-Turán inequality

Theorem (Erdös-Turán)

There are constants C1,C2 such that for all finitely supported
probability measures µ on T and all m ∈ N,

D(µ) ≤ C1
1

m + 1
+ C2

m∑
h=1

∣∣∣∣ µ̂(h)

h

∣∣∣∣
where µ̂ is the Fourier transform of µ.



Some Fourier analysis

The Fejér kernel

Fm(x) =
m∑

k=−m

m + 1− |k |
m + 1

e(kx)

is used in the proof that a continuous function is uniquely
determined by its Fourier series. (Here e(z) = e2πiz)

These Fm are trigonometric polynomials of degree m and hence
their convolution with a given function f is a smooth
approximation to f .

The proof of the Erdös-Turan inequality goes by setting
f (x) = D([0, x), µ) and noting that D(µ) ≤ 2 supx f (x), so it is
enough to bound supx f (x).

Then we consider convolutions |(f ∗ Fm)(s)|, which for a good

value of s is bounded between supx f (x)− C1
m and C2

∑m
h=1

µ̂(h)
h .
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A “basic” calculation using Erdös-Turan

Let u be irrational and let µ be the uniform probability measure on
{u, 2u, . . .Nu} ⊆ T.

Recalling that e(z) = e2πiz we have

D(µ) ≤C1
1

m + 1
+ C2

m∑
h=1

∣∣∣∣ µ̂(h)

h
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=C1
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m∑
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∣∣∣∣∣1h 1

N

N∑
n=1

e(hnu)

∣∣∣∣∣
The inner sum has the form of a geometric series.
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Continued calculation

Isolating this geometric series we have:

∣∣∣∣∣
N−1∑
n=0

e(nz)

∣∣∣∣∣ =

∣∣∣∣e(Nz)− 1

e(z)− 1

∣∣∣∣ =

∣∣∣∣e(Nz/2)(e(Nz/2)− e(−Nz/2)

e(z/2)(e(z/2)− e(−z/2))

∣∣∣∣
=

∣∣∣∣e(Nz/2) sin(πNz)

e(z/2) sin(πz)

∣∣∣∣ =

∣∣∣∣sin(πNz)

sin(πz)

∣∣∣∣ ≤ 1

|sin(πz)|
≤ 1

2〈z〉

where 〈z〉 is the distance to the closest integer.



Continued calculation

From the above we need to bound sums of the form

m∑
h=1

1

h〈hu〉

This can be done using a famous theorem of Roth:

Theorem
If u is an algebraic irrational number then there is a constant C so
that for all h, 〈hu〉 > Ch−1−ε

A similar fact is true for almost every u ∈ T.

Since we only used a single irrational, the bounds that we get on
D(µ) are still inadequate to get convergence of the averaging
procedure using uniform measures over finite sets.
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A lemma for almost every u

Lemma
For every ε > 0, for almost every u ∈ T, there are finitely many
h > 0 such that 〈hu〉 < h−1−ε.

For each h > 0, Let Eh be the set of u ∈ T for which we have the
condition in the lemma. Clearly, u is in Eh if and only if for some
m ≤ h, u lies in the interval of length 2h−2−ε around m/h.

Summing over m, we have that the measure of Eh is at most
2(h + 1)/h−2−ε.

Note that these measures are summable, so by the Borel-Cantelli
lemma the set of u that lie in infinitely many Eh has measure 0.
The complement is the desired set.
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More irrationals

Option 1:

I We can choose u1, . . . ud to be either random or algebraic
irrationals in T and repeat the argument above using
Erdös-Turan with a uniform measure. For algebraic irrationals
this requires a (very difficult) theorem of Schmidt.

I To pass higher dimensions we can then consider product
actions, where Zdk acts on Tk .

Option 2:
We can choose u1, . . . ud ∈ Tk randomly and use a higher
dimensional version of the Erdös-Turan inequality due to Koksma.
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About averaging with random walks

We saw in the previous application of the Erdös-Turan inequality
that we need to bound the Fourier coefficients of the measure µ̂(h).

When µ is of the form ρ∗k we have that ρ̂∗k(h) = (ρ̂(h))k .

Since the measure ρ has a simple definition ρ(±xi ) = 1
2d and the

xi are chosen randomly, it is enough to bound these Fourier
coefficients in expected value.

The expected value ρ̂∗k(h) ≈ k−d/2.
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Reducing the number of pieces

I Note that Roth’s and Schmidt’s theorem are not effective. So
for the algebraic irrationals that we will use, we need explicit
constants in those theorems.

I The number of pieces depends on the bound on the flow
across an edge, which is the convergent infinite sum from the
theorem that circle squaring is possible with algebraic
irrational coordinates.

I We use a computer to explicitly compute initial terms of the
discrepancy in order to improve the bound.
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Open questions

1. Let ε > 0. Are the disk and the square equidecomposible
using pieces with dimension of their boundary at most 1 + ε?

2. Are the disk and square equidecomposible using Fσ sets?
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