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Recap

Let a be the action of Z9 on Tk given by translations u1, . .. ug
that we will choose later.

We are interested in flows of functions f with f fdd = 0. We're
particularly interested in 14 — 15 where A, B are the disk and the
square.

Finding flows amounts to proving numerical bounds on functions of
the form |Av,(f)(x)| = | [ fdp~|.

Assuming nice properties of f, for any measure p, | [ fdp| can be
bounded in terms of D(u) = sup; [A(1) — p(1)].

Bounding D(u) depends in a fundamental way on the choice of the
action.



A first theorem

Laczkovich's 1990 solution to Tarski's circle squaring problem used
translations chosen randomly. In this paper, he asked if the same
was possible with algebraic irrational translations.

Theorem (Marks-U)

Known circle squaring results are possible using translations with
algebraic irrational coordinates.



Discrepancy of functions

For a probability measure ;1 on TX and a function f : TK — R, let
D(f,pu) =| [ fdu — [ fd\| where X is Lebesgue measure.

Note that when [ fd\ = 0, the values |Av,(f)(x)| are of the form
D(f, p*) where p*(7 - x) = p() for v € Z9 and 0 otherwise.



Discrepancy of measures

For a probability measure p, let D(1) = sup; |(1) — A(1)| where
the supremum is over boxes | C Tk.

When f is the characteristic function of a set A, Laczkovich
showed that the dimension of the boundary of A, Dim(0A), can be
used to bound D(14, 1) in terms of D(u).



Riemann integration

For a bounded function f on T, let
7(f,8) = [sup,ep,x) F(v) — infyep;(x) F(v)dx

Fact
f : TX — R is Riemann integrable if and only if
Iim5_>0+ 7'(7(7 (5) =0.

We will be interested in functions with explicit bounds on 7(f,9).
For characteristic functions this is equivalent to the set having
small boundary. Note also that Holder functions also have bounds
on the integrand of 7(f,4) and hence on 7(f,0).



A second theorem

For a finitely supported probability measure p on Z9, let rank(p)
be the rank of the subgroup of Z9 generated by the support of p.
Theorem (Bernshteyn-Tserunyan-U)

For almost every i = uy,...uqy € TX, if f, g are functions with

[ fd\ = [ gdX and 7(f,6),7(g,0) are O(6¢) and p is a probability
measure with rank(p) > 2k/e, then there are functions f and f,
for -y € supp(p) such that

L f=f+ Zvesupp (p) fy
2' g - f + Z'yEsupp(p) p( )(’7 a f)



Bounding D(f, i) in terms of D(u)

Theorem (Bernshteyn-Tserunyan-U)

If 7(f,0) is O(6%), then there is a constant C such that for all
probability measures p, D(f, 1) < CD(u)*/*.



A sketch of the proof

Let Py be the natural partition of T into half-open boxes of side
length 1/N. Define Ho(x) = inf,cp f(y) where P € Py is unique
with x € P. And define H; similarly with sup.

Then we have Hy < f < H;.
It follows that

</Hodp—/Hod)\>+(/Hod)\—/fdA) g/fdu—/fd)\
< (/Hldu—/Hld/\)+</H1d)\—/fd)\>.

Taking the absolute value and rearranging with the triangle
inequality we have

D(f, n) < max D(H;, p) + max
1=y,

nax /H,-d)\—/fd)\’.




Bounding | [ Hid — [ fd)|

We have
’/H;d)\—/fd)\‘ < 7(f,Vk/N)

since for all x, the ball of radius ﬂ/N contains unique P € Py
with x € P.

Having N ~ 1/D(u)'/* gives the correct bound.



Bounding D(H;, 1)

This involves some “harmonic analysis”. For simplicity we focus on
the k = 1 case. The goal is to write H; efficiently as a sum of
characteristic functions of intervals.

At the end of the argument we will need to take N =~ 1/D(u), so
decomposing H; as the trivial sum of N characteristic functions is
unhelpful.

Consider the following recursive procedure: At step n > 0, define
ap = [p Hidx for P € P2 and redefine H; to be

H; — EPEP,, aplp.

At the end, the original function H; is written as ), aplp.

It follows that D(H;, 1) < > p D(aplp, ) < D(p) > plapl.



Bounding D(H;, 1) continued
Note that for a step function H defined on Py and P € Pan for

some n, the quantity
Jol=scer fo

TVp(H)A(P)

is at most

Note that each |ap| is at most a term of the above form and
following the inductive procedure above we get that
>_plap| <4TV(H).

Finally, TV(H;) can be bounded by 2N7(f,2/N) using the fact
that 7(f,2/N) “detects” the sup/inf used in defining H;.

Combining our estimates we have

D(H;, 1) < 4D(u) TV(H;) < 4D(u)Nr(f,2/N) < 4r(f,2/N)



Product measures

Proposition
Suppose that ;i = Hfle Wi where each u; is a measure on T. Then
we have D(u) < 2K=1 max; D(;).

We prove the case k = 2. Fix an interval | = L x b.
We compute
(1) — M) =|pa(h)p2(k) = Mh)A(R))|
=lpa(h)p2(k) — A(h)p2(k) + A(h)p2(k) — A(h)A(R)
(

<pa(k)|p1(h) = M)+ A(h)|p2(k) — A(k)|
<2 max D(l;, pi)

Then take the supremum over /1, b.



This suggests the following:

Lemma (Marks-U)

For = Hfle ;i where i is a uniform measure over a finite subset
of T and a set A with 7(14,9) is O(d%), there is a constant such
that D(14, 1) < C(max; D(pi))®.

Note that we've dropped the 1/k from the exponent in the
previous theorem.



A basic lemma about discrepancy

For a finite set F, we write g for the uniform probability measure
on F.

Lemma
Suppose F = {xo,...,xn-1} C [0,1) is a finite set where
Xp < ...<Xp_1. Then foralli < n, |x; — | < D(uF).

Note that [x; — £| = D([0, x), ur) < D(f).



