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Recap

Let a be the action of Zd on Tk given by translations u1, . . . ud
that we will choose later.

We are interested in flows of functions f with
∫
fdλ = 0. We’re

particularly interested in 1A − 1B where A,B are the disk and the
square.

Finding flows amounts to proving numerical bounds on functions of
the form |Avρ(f )(x)| = |

∫
fdρx |.

Assuming nice properties of f , for any measure µ, |
∫
fdµ| can be

bounded in terms of D(µ) = supI |λ(I )− µ(I )|.

Bounding D(µ) depends in a fundamental way on the choice of the
action.



A first theorem

Laczkovich’s 1990 solution to Tarski’s circle squaring problem used
translations chosen randomly. In this paper, he asked if the same
was possible with algebraic irrational translations.

Theorem (Marks-U)

Known circle squaring results are possible using translations with
algebraic irrational coordinates.



Discrepancy of functions

For a probability measure µ on Tk and a function f : Tk → R, let
D(f , µ) = |

∫
fdµ−

∫
fdλ| where λ is Lebesgue measure.

Note that when
∫
fdλ = 0, the values |Avρ(f )(x)| are of the form

D(f , ρx) where ρx(γ · x) = ρ(γ) for γ ∈ Zd and 0 otherwise.



Discrepancy of measures

For a probability measure µ, let D(µ) = supI |µ(I )− λ(I )| where
the supremum is over boxes I ⊆ Tk .

When f is the characteristic function of a set A, Laczkovich
showed that the dimension of the boundary of A, Dim(∂A), can be
used to bound D(1A, µ) in terms of D(µ).



Riemann integration

For a bounded function f on Tk , let
τ(f , δ) =

∫
supy∈Bδ(x) f (y)− infy∈Bδ(x) f (y)dx

Fact
f : Tk → R is Riemann integrable if and only if
limδ→0+ τ(f , δ) = 0.

We will be interested in functions with explicit bounds on τ(f , δ).
For characteristic functions this is equivalent to the set having
small boundary. Note also that Holder functions also have bounds
on the integrand of τ(f , δ) and hence on τ(f , δ).



A second theorem

For a finitely supported probability measure ρ on Zd , let rank(ρ)
be the rank of the subgroup of Zd generated by the support of ρ.

Theorem (Bernshteyn-Tserunyan-U)

For almost every ~u = u1, . . . ud ∈ Tk , if f , g are functions with∫
fdλ =

∫
gdλ and τ(f , δ), τ(g , δ) are O(δε) and ρ is a probability

measure with rank(ρ) > 2k/ε, then there are functions f̄ and fγ
for γ ∈ supp(ρ) such that

1. f = f̄ +
∑

γ∈supp(ρ) fγ

2. g = f̄ +
∑

γ∈supp(ρ) ρ(γ)(γ ·~u f ).



Bounding D(f , µ) in terms of D(µ)

Theorem (Bernshteyn-Tserunyan-U)

If τ(f , δ) is O(δα), then there is a constant C such that for all
probability measures µ, D(f , µ) ≤ CD(µ)α/k .



A sketch of the proof

Let PN be the natural partition of Tk into half-open boxes of side
length 1/N. Define H0(x) = infy∈P f (y) where P ∈ PN is unique
with x ∈ P. And define H1 similarly with sup.

Then we have H0 ≤ f ≤ H1.
It follows that(∫

H0dµ−
∫

H0dλ
)

+
(∫

H0dλ−
∫

fdλ
)
≤
∫

fdµ−
∫

fdλ

≤
(∫

H1dµ−
∫

H1dλ
)

+
(∫

H1dλ−
∫

fdλ
)
.

Taking the absolute value and rearranging with the triangle
inequality we have

D(f , µ) ≤ max
i=0,1

D(Hi , µ) + max
i=0,1

∣∣∣ ∫ Hidλ−
∫

fdλ
∣∣∣.



Bounding
∣∣∣ ∫ Hidλ−

∫
fdλ
∣∣∣

We have ∣∣∣ ∫ Hidλ−
∫

fdλ
∣∣∣ ≤ τ(f ,

√
k/N)

since for all x , the ball of radius
√
k/N contains unique P ∈ PN

with x ∈ P.

Having N ≈ 1/D(µ)1/k gives the correct bound.



Bounding D(Hi , µ)

This involves some “harmonic analysis”. For simplicity we focus on
the k = 1 case. The goal is to write Hi efficiently as a sum of
characteristic functions of intervals.

At the end of the argument we will need to take N ≈ 1/D(µ), so
decomposing Hi as the trivial sum of N characteristic functions is
unhelpful.

Consider the following recursive procedure: At step n ≥ 0, define
αP =

∫
P Hidx for P ∈ P2n and redefine Hi to be

Hi −
∑

P∈Pn
αP1P .

At the end, the original function Hi is written as
∑

P αP1P .

It follows that D(Hi , µ) ≤
∑

P D(αP1P , µ) ≤ D(µ)
∑

P |αP |.



Bounding D(Hi , µ) continued

Note that for a step function H defined on PN and P ∈ P2n for
some n, the quantity ∫

P

∣∣∣H − 1

λ(P)

∫
P
H
∣∣∣

is at most
TVP(H)λ(P)

Note that each |αP | is at most a term of the above form and
following the inductive procedure above we get that∑

P |αP | ≤ 4TV (Hi ).

Finally, TV (Hi ) can be bounded by 2Nτ(f , 2/N) using the fact
that τ(f , 2/N) “detects” the sup/inf used in defining Hi .

Combining our estimates we have

D(Hi , µ) ≤ 4D(µ)TV (Hi ) ≤ 4D(µ)Nτ(f , 2/N) ≤ 4τ(f , 2/N)



Product measures

Proposition

Suppose that µ =
∏k

i=1 µi where each µi is a measure on T. Then
we have D(µ) ≤ 2k−1 maxi D(µi ).

We prove the case k = 2. Fix an interval I = I1 × I2.

We compute

|µ(I )− λ(I )| =|µ1(I1)µ2(I2)− λ̄(I1)λ̄(I2)|
=|µ1(I1)µ2(I2)− λ̄(I1)µ2(I2) + λ̄(I1)µ2(I2)− λ̄(I1)λ̄(I2)|
≤µ2(I2)|µ1(I1)− λ̄(I1)|+ λ̄(I1)|µ2(I2)− λ̄(I2)|
≤2 max

i=1,2
D(Ii , µi )

Then take the supremum over I1, I2.



This suggests the following:

Lemma (Marks-U)

For µ =
∏k

i=1 µi where µi is a uniform measure over a finite subset
of T and a set A with τ(1A, δ) is O(δα), there is a constant such
that D(1A, µ) ≤ C (maxi D(µi ))α.

Note that we’ve dropped the 1/k from the exponent in the
previous theorem.



A basic lemma about discrepancy

For a finite set F , we write µF for the uniform probability measure
on F .

Lemma
Suppose F = {x0, . . . , xn−1} ⊆ [0, 1) is a finite set where
x0 < . . . < xn−1. Then for all i < n, |xi − i

n | ≤ D(µF ).

Note that |xi − i
n | = D([0, xi ), µF ) ≤ D(µF ).


