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Three parts:

1. Equidecomposition, flows and averaging.

2. Main theorems. Bounding discrepancy of functions.

3. Bounding discrepancy of measures.

These talks contain joint work with Andrew Marks and with Anton
Bernshteyn and Anush Tserunyan.



The Banach Tarski paradox

Theorem (Banach-Tarski(AC))

The unit ball in R3 can be partitioned into 5 pieces which can be
moved by isometries to partition two unit balls.

We say that the unit ball is paradoxical.

Part of a larger project in the early 20th century to understand

1. the foundations and limitation of measure theory,

2. how measure theory is related to classical ideas such as
decomposing polygons into congruent sets and

3. the role of the axiom of choice in the above.



Questions

Question (Borel Ruziewicz problem)

For n ≥ 2, is Lebesgue measure the unique finitely additive,
isometry invariant measure defined on the Borel sets?

This question is open, but has a positive answer when Borel sets
are replaced by Lebesgue measurable sets. This is due to Drinfeld,
Margulis and Sullivan.

Question (Tarski’s circle squaring problem)

Given a disk and a square in the plane with the same area, are they
equidecomposible using isometries?

This was solved positively by Laczkovich in 1990 with more recent
work by Grabowski-Máthé-Pikhurko, Marks-U and
Máthé-Noel-Pikhurko.



Equidecomposition

We start by defining a natural real valued notion of
equidecomposition.

Definition
Functions f , g : X → R are equidecomposible using
transformations T1, . . . ,Tn if there are functions f0, f1, . . . , fn such
that f = f0 + f1 + · · ·+ fn and g = f0 + T1(f1) + · · ·+ Tn(fn).



Remarks

The usual notion of equidecomposition of sets can be obtained by
requiring all functions to be characteristic functions, that is
{0, 1}-valued.

In this case, we will say that sets A,B are equidecomposible.

When the transformations Ti come from a group action a, we will
say that functions f , g are a-equidecomposible.



Flows

Let G be a graph on a vertex set V where we view the edge set E
as symmetric irreflexive relation.

Let XG be the set of functions f : V → R and ΦG be the set of
functions φ : E → R such that for all (x , y) ∈ E ,
φ(x , y) = −φ(y , x).

We define ∂φ = −
∑

y∈NG (x)
φ(x , y) where NG (x) is the

neighborhood of x in G .

We say that φ is an f -flow if ∂φ+ f = 0



Let T1, . . . ,Tn be transformations. Put (x , y) ∈ E if and only if
there is i ≤ n such that Ti (x) = y or Ti (y) = x .

Proposition

For all f , g ∈ RX , there is an f − g -flow in (X ,E ) if and only if f
and g are equidecomposible as functions using the transformations
Ti for i ≤ m and the identity.

The following equations explain the proof: fi (x) = φ(x ,Ti (x)) and
f0 = f −

∑m
i=1 fi



Measures and paradoxes

We have the following theorem that combines work of Tarski and
the definitions from the previous slides. For an action a, we write
G (a, S) for the Schreier graph of the action with generators from
S .

Proposition

Suppose a is a Borel action of a countable group Γ on a standard
Borel space X . Then the following are equivalent:

1. There is no finitely additive invariant Borel measure µ on X
taking values in [0,∞] such that µ(A) = 1.

2. For some m, m copies of A are a-equidecomposable with
m + 1 copies of A using Borel sets.

3. 1A is a-equidecomposible with 0 (the constantly 0 function)
using bounded Borel integer-valued functions.

4. 1A is a-equidecomposible with 0 using bounded Borel
functions.



A sketch of the proof

1. (1) implies (2) is a theorem of Tarski. Assuming that (2) fails,
a measure as in (1) can be constructed by transfinite
induction.

2. (2) implies (3). (2) implies that (m + 1)1A and m1A are
equidecomposible where the witnessing functions are
characteristic functions. By the equivalence between
equidecompositions and flows, there is an integer valued flow
of (m + 1)1A −m1A = 1A in G (a, S) for a suitably chosen S .



Proof sketch continued

1. (3) implies (4) is clear.

2. Assume (4) and there is a measure µ as in (1). By (4), there
are f0, . . . , fn and group elements γ1, . . . , γn such that
1A = f0 + · · ·+ fn and 0 = f0 + γ1(f1) + · · ·+ γn(fn). We get
a contradiction by integrating:

1 = µ(A) =

∫
1Adµ =

n∑
i=0

∫
fidµ =

∫
f0dµ+

n∑
i=1

∫
γ(fi )dµ =

∫
0dµ = 0



Approaches to Borel Ruziewicz

Proposition

Each of the following statements implies a positive answer to the
Borel Ruziewicz problem.

1. For n ≥ 2, there is a function f : R+ → R+ with
limε→0+ f (ε) = 0 such that for all open sets A ⊆ Sn, there are
a finite set S ⊆ SOn+1 and a flow φ on G (a,S) such that
∂φ+ 1A is bounded by f (ε).

2. For n ≥ 2, for all open sets A ⊆ Sn, A is equidecomposible by
isometries to a ball.



Circle squaring via flows

The setting:

I Work with “nice” sets A,B ⊆ Tk with the same Lebesgue
measure.

I The goal is to find an equidecomposition of A,B via
translations.

As an intermediate step, we will try to find an equidecomposition
of 1A and 1B or equivalently a bounded flow of 1A − 1B in a graph
generated by translations.



Completing the proof of circle squaring

There are two steps:

1. Convert the bounded 1A − 1B -flow to bounded integer valued
flow.

2. Convert the bounded integer valued flow to bijection from A
to B using finitely many translations from the action.

Both of these steps can be made constructive. A recent theorem of
Máthé-Noel-Pikhurko shows that the pieces of the decomposition
can have “small boundary” assuming that A and B do.



Averaging

Let u1, . . . , ud ∈ Tk and let a be the action of Zd be the action
given by translating by integer linear combinations of u1, . . . , ud .

Let ρ be a finitely supported measure on Zd and f : Tk → R be a
bounded function.

Define Avρ(f ) : Tk → R by Avρ(f )(x) =
∑

γ∈Zd ρ(γ)f (γ · x).



Examples

1. ρ(±ei ) = 1/2d corresponds to a single step of the simple
random walk. In this case, Avρ is a kind of graph Laplacian.

2. For N ∈ N, ρ is the uniform probability measure over the set
{γ ∈ Zd | 0 ≤ γ < N pointwise }. These measures appear in
Laczkovich’s solution to circle squaring.



Obtaining flows by averaging

Let f : Tk → R with
∫
fdλ = 0.

Let ∆ = Avρ where ρ is the measure from the simple random walk.
Consider the sequence

f ,∆(f ),∆2(f ), . . .

which we hope converges to 0.

When we apply ∆ to a function h, this is “implemented” by a flow
φh in the sense that ∂φh + h = ∆(h).



Obtaining flows by averaging

In particular for the sequence above, if we let φn be the flow such
that ∂φn∆n(f ) = ∆n+1(f ), then we have

∂
( ∞∑

n=0

φn

)
+ f = lim

N→∞
∂
( N∑

n=0

φn

)
+ f = lim

N→∞
∆N+1(f ) = 0

assuming that
∑∞

n=0 φn is absolutely convergent.

A straightfoward calculation using the definition of φn, shows that
the absolute convergence of

∑∞
n=0 φn reduces to the absolute

convergence of
∑∞

n=0 ∆n(f ).



Analysis of ∆n(f )

Recall that we let ρ be the measure on Zd corresponding to the
simple random walk.

A straightforward calculation shows that ∆n(f ) = Avρ∗n(f ) where
ρ∗n is the convolution of ρ with itself n-times.

So our goal is to have a summable numerical bound on |Avρ∗n(f )|
in terms of n.

Note that for each x , Avρ∗n(f )(x) is a finite average of values of f ,
so we will use techniques from numerical integration and
discrepancy theory to bound this.



Averages using uniform measures

Let σn be the uniform probability measure over the set
{γ ∈ Zd | 0 ≤ γ < 2n pointwise }.

Consider the sequence

f ,Avσ1(f ),Avσ2(f ), . . .

This sequence also produces a flow which relies on the absolute
convergence of

∑∞
n=0 2nAvσn(f ) and which has a more

complicated formula.


