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Back-and-forth again with the Lifting Lemma

This talk focuses on three further consequences of the Lifting

Lemma and the main theorem presented in the previous talks, as

well as some related open questions.

Recall that the Lifting Lemma can be used in a back-and-forth

argument to prove, assuming CH, that σ and σ−1 are conjugate.

(P(ω)/Fin, σ) (P(ω)/Fin, σ−1)
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Back-and-forth again with the Lifting Lemma

In fact, the argument we gave shows something a little stronger:

Theorem

Suppose ⟨A, σ−1⟩ is a countable elementary substructure of

⟨P(ω)/Fin, σ−1⟩, and η is an embedding of ⟨A, σ−1⟩ into
⟨P(ω)/Fin, σ⟩. Then there is an isomorphism ϕ from ⟨P(ω)/Fin, σ−1⟩
to ⟨P(ω)/Fin, σ⟩ with ϕ↾A = η.

Theorem

Suppose ⟨A, σ⟩ is a countable elementary substructure of

⟨P(ω)/Fin, σ⟩, and η is an embedding of ⟨A, σ⟩ into ⟨P(ω)/Fin, σ⟩.
Then there is an automorphism ϕ of ⟨P(ω)/Fin, σ⟩ with ϕ↾A = η.

Corollary

There is a nontrivial automorphism of P(ω)/Fin that commutes with

σ, i.e., an automorphism ϕ such that ϕ ◦ σ = σ ◦ ϕ.
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Square roots of trivial mappings

Let f denote some permutation of ω with exactly one Z-like orbit.

• • • • • • • • . . .. . .

Let αf denote the trivial automorphism of P(ω)/Fin induced by f .

This map does not have a trivial “square root”:

Lemma

There is no trivial automorphism ϕ of P(ω)/Fin such that ϕ ◦ϕ = αf

In contrast, CH implies αf does have a nontrivial square root:

Lemma

If σ and σ−1 are conjugate, there is a (necessarily nontrivial)

automorphism ϕ of P(ω)/Fin such that ϕ ◦ ϕ = αf . Furthermore,

some such nontrivial automorphism ϕ is conjugate to σ.
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Square roots of trivial mappings

Proof: Let f denote a Z-like orbit on ω as before:

f
• • • • • • • • . . .

• • • • • • • • . . .

Modulo finite changes, this can be viewed as a copy of the

successor map and a copy of its inverse. Define g : ω → ω by

g(n) = n + 2. This looks like two copies of the successor map:

g
• • • • • • • • . . .

• • • • • • • • . . .

Let αf and αg denote the corresponding trivial automorphisms of
P(ω)/Fin. If σ and σ−1 are conjugate, αf and αg are conjugate too:

fix an automorphism ϕ with ϕ◦αf = αg ◦ϕ, i.e. αf = ϕ−1 ◦αg ◦ϕ.
But αg = σ ◦ σ, hence αf = (ϕ−1 ◦ σ ◦ ϕ) ◦ (ϕ−1 ◦ σ ◦ ϕ).
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Two nontrivial automorphisms

Thus we get two consequences of CH regarding the shift map:

1. there is a nontrivial automorphism that commutes with σ, and

2. there is a nontrivial automorphism conjugate to σ.

Theorem

If there is a nontrivial automorphism of P(ω)/Fin, then either

1. there is a nontrivial automorphism that commutes with σ, or

2. there is a nontrivial automorphism conjugate to σ.

Proof: Suppose ϕ is a nontrivial automorphism of P(ω)/Fin, and let

ψ = ϕ−1 ◦ σ ◦ ϕ.

If ψ is nontrivial, (1) holds.If ψ is trivial, then either ψ = σ or σ−1, as ZFC proves no other

trivial automorphism is conjugate to σ. If ψ = σ, (2) holds.

If ψ = σ−1, then σ and σ−1 are conjugate, so αf has a nontrivial

square root that is conjugate to σ. Hence (1) holds.

Open Question

Does the existence of a nontrivial automorphism of P(ω)/Fin imply

that one these two alternatives holds? Or perhaps both? Or is it

consistent that either one can hold without the other?
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van Douwen’s index theorem

The prodigal index of an almost bijection f of ω is

Ind(f ) = |domain(f ) \ image(f )| − |image(f ) \ domain(f )|.

This is an integer, because domain(f ) and image(f ) are co-finite

subsets of ω. For example, the successor function has prodigal

index 1, its inverse has index −1, and their “join” has index 0.

• • • • • • • • . . .

• • • • • • • • . . .

Theorem (van Douwen, 1983)

If two trivial automorphisms αf and αg of P(ω)/Fin are conjugate

by a trivial automorphism, then Ind(f ) = Ind(g).

In particular, it makes sense to write Ind(αf ), not just Ind(f ).

For example, Ind(σ) = 1 and Ind(σ−1) = −1.
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Conjugating other trivial automorphisms

It is possible for two automorphisms to be conjugate even if they

have a different index, e.g. σ and σ−1.

However:

Theorem (B. and Farah, 2024)

If two trivial automorphisms α and β of P(ω)/Fin are conjugate,

then Ind(α) and Ind(β) have the same parity.

In other words, the index parity is a ZFC obstruction to conjugacy.

Theorem (B. and Farah, 2024)

Let α and β be trivial automorphisms of P(ω)/Fin. TFAE:

1. α and β are conjugate in a forcing extension.

2. CH proves α and β are conjugate.

3. Ind(α) and Ind(β) have the same parity, and the structures

⟨P(ω)/Fin, α⟩ and ⟨P(ω)/Fin, β⟩ are elementarily equivalent.
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Perhaps the index parity isn’t a real obstruction.

In item (3), the requirement on index parity may be unnecessary.

Open Question

Suppose α and β are trivial automorphisms of P(ω)/Fin and the

structures ⟨P(ω)/Fin, α⟩ and ⟨P(ω)/Fin, β⟩ are elementarily

equivalent. Does this imply α and β have the same index parity?

Open Question

Let f be a permutation of ω with infinitely many Z-like orbits, and

let g be an almost permutation with infinitely many Z-like orbits

and one N-like orbit. Is ⟨P(ω)/Fin, αf ⟩ ≡ ⟨P(ω)/Fin, αg ⟩?
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H and M

Let H = [0,∞), the non-negative reals, and let M = ω × [0, 1].

Observe that H = M/ ∼, where ∼ is the equivalence relation on

M obtained by taking (n, 1) ∼ (n + 1, 0) for all n ∈ ω.

• • • • • • • • • • • • . . .

• • • • • • • . . .

Let H∗ = βH \H and M∗ = βM \M denote the Čech-Stone

remainders of these two spaces.

Just as H can be obtained from M by gluing some points together,

there is an equivalence relation ∼ on M∗ such that H∗ = M∗/ ∼.
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H∗ from M∗

Suppose ⟨xn : n ∈ ω⟩ is a sequence of points in [0, 1].

Then ⟨(n, xn) : n ∈ ω⟩ is a sequence in M, and

⟨xn⟩u = u- limn∈ω(n, xn) (the limit is taken in βM)

is a point of M∗ for every u ∈ ω∗. For each u ∈ ω∗, let

Iu = {⟨xn⟩u : ⟨xn⟩ ∈ Iω}.

This is a connected component of M∗, and gluing these

components together in the right way gives H∗. Specifically, let

⟨1, 1, 1, . . .⟩u ∼ ⟨0, 0, 0, . . .⟩σ(u)
for each u ∈ ω∗ (identifying the rightmost point of Iu with the

leftmost point of Iσ(u)). Then H∗ = M∗/ ∼.
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The standard subcontinua of H∗

Given u ∈ ω∗, the set Cu = {⟨xn⟩u : ⟨xn⟩ ∈ Iω} is a dense subset of

the continuum Iu.

Observe that Cu = [0, 1]ω/u can be viewed as a

copy of the hyperreals between 0 and 1 (one way of constructing

them, anyway). Iu is a compactification of Cu.

Iu is similar to the Dedekind completion of Cu, but more complex:

each gap in Cu is filled with 2c points.

The natural ordering on Cu induces a partial ordering <u on Iu.

H∗ is obtained from M∗ by gluing these Iu together, the right

endpoint of Iu being glued to the left endpoint of Iσ(u). Each of

these Iu is called a standard subcontinuum of H∗.
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An order-reversing autohomeomorphism

A self-homeomorphism f : H∗ → H∗ is called order-reversing if

• each standard subcontinuum Iu maps to another standard

subcontinuum Iv ,

• but in such a way that x <u y if and only if f (y) <v f (x).

Theorem (B., Dow, and Hart, 2024)

CH implies there is an order-reversing self-homeomorphism of H∗.

A self-homeomorphism H∗ → H∗ is trivial if it is induced by a

homeomorphism between two co-compact subsets of H. Any such

map is eventually order-preserving, and so the self-homeomorphism

it induces on H∗ cannot be order-reversing.

Theorem (Vignati, 2021)

OCA +MA implies all self-homeomorphisms of H∗ are trivial, and

in particular there is no order-reversing self-homeomorphism of H∗.
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This simple recipe has just 2 ingredients
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that for every self-homeomorphism f : ω∗ → ω∗, there is an order-

preserving self-homeomorphism F : M∗ → M∗ such that f = π ◦ F .

In other words, every self-homeomorphism of ω∗ lifts through π to

an order-preserving self-homeomorphism of M∗. Interestingly, the

conclusion of this theorem is implied by both CH and OCA

(because lifting trivial self-homeomorphisms of ω∗ to M∗ is easy).

However, it is not true in ZFC.
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A sketch of the proof

Theorem (B., Dow, and Hart, 2024)

CH implies there is an order-reversing self-homeomorphism of H∗.

Proof sketch, assuming the two main ingredients:

Assuming CH, there is an automorphism of P(ω)/Fin conjugating σ

and σ−1. Via Stone duality, this gives us a self-homeomorphism

f : ω∗ → ω∗ such that f ◦ σ = σ−1 ◦ f .

(As before, we’re using σ to denote the Stone dual of the shift

map on P(ω)/Fin, which maps an ultrafilter u ∈ ω∗ to the ultrafilter

generated by {A+ 1 : A ∈ u}.)

Using the theorem on the previous slide (and using CH again),

there is an order-preserving self-homeomorphism F : M∗ → M∗

such that π ◦ F = f .
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CH implies there is an order-reversing self-homeomorphism of H∗.

Proof sketch, assuming the two main ingredients:

Let g denote the order-reversing map (n, x) 7→ (n, 1− x) on M,

• • • • • • • • • • • • . . .

and let G denote the self-homeomorphism of M∗ induced by g .

We now have two self-homeomorphisms of M∗, F and G . G is

order-reversing and F is order-reversing, so their composition

H = F ◦ G is an order-reversing self-homeomorphism of M∗.

Furthermore, because G sends each Iu to itself (only reversed),

H maps each Iu to If (u), just like F .
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A sketch of the proof

Theorem (B., Dow, and Hart, 2024)

CH implies there is an order-reversing self-homeomorphism of H∗.

Proof sketch, assuming the two main ingredients:

Recall H∗ = M∗/ ∼, where the equivalence classes of ∼ are either

singletons or the sets of the form {1̄u, 0̄σ(u)}. Observe that

• G (1̄u) = 0̄u and G (0̄σ(u)) = 1̄σ(u), and

• F (0̄u) = 0̄f (u) and F (1̄σ(u)) = 1̄f ◦σ(u) = 1̄σ−1◦f (u).

Thus H = F ◦ G maps the set {1̄u, 0̄σ(u)} to the set

{0̄f (u), 1̄σ−1(f (u))}, which is also an equivalence class of ∼.

Because H preserves the equivalence classes of ∼, the function

[x ]∼ 7→ [H(x)]∼ is a well-defined mapping on H∗. This function is

the sought-after order-reversing self-homeomorphism of H∗.
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A few more questions

Open Question

Is it consistent with ¬CH that σ and σ−1 are conjugate?

Open Question

Assuming CH, suppose there is a nontrivial automorphism α of
P(ω)/Fin such that ⟨P(ω)/Fin, α⟩ ≡ ⟨P(ω)/Fin, σ⟩. Does this imply α

is conjugate to σ? More generally, does CH imply that elementarily

equivalent automorphisms are conjugate? (This fails under OCA.)

Open Question (Szeptycki)

Is it consistent (does it follow from CH) to have a somewhere

trivial automorphism of P(ω)/Fin that conjugates σ and σ−1?

Open Question (Moore)

Can we characterize when CH implies two structures of the form

⟨P(ω)/Fin, α, β⟩ are isomorphic?
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