Does $\mathcal{P}(\omega)/\text{Fin}$ **know its right hand from its left?** Part 2

Will Brian January 27, 2025

University of North Carolina at Charlotte

Recall from the last talk the statement of the key lemma:

Lemma (the Lifting Lemma)

Let $(\mathbb{A}, \sigma^{-1})$ and $(\mathbb{B}, \sigma^{-1})$ be countable substructures of $(\mathcal{P}(\omega)/\operatorname{Fin}, \sigma^{-1})$ with $\mathbb{A} \subseteq \mathbb{B}$, and suppose η is an elementary embedding from $(\mathbb{A}, \sigma^{-1})$ into $(\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$. Then η extends to an embedding $\bar{\eta}$ of $(\mathbb{B}, \sigma^{-1})$ into $(\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$, with $\bar{\eta} \circ \iota = \eta$.

Recall from the last talk the statement of the key lemma:

Lemma (the Lifting Lemma)

Let $(\mathbb{A}, \sigma^{-1})$ and $(\mathbb{B}, \sigma^{-1})$ be countable substructures of $(\mathcal{P}(\omega)/\operatorname{Fin}, \sigma^{-1})$ with $\mathbb{A} \subseteq \mathbb{B}$, and suppose η is an elementary embedding from $(\mathbb{A}, \sigma^{-1})$ into $(\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$. Then η extends to an embedding $\bar{\eta}$ of $(\mathbb{B}, \sigma^{-1})$ into $(\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$, with $\bar{\eta} \circ \iota = \eta$.

The goal of this talk is to discuss some of the ideas that go into the proof of this lemma.

Restatement of the lemma

An instance of the lifting problem is a 4-tuple $((\mathbb{A}, \sigma^{-1}), (\mathbb{B}, \sigma^{-1}), \iota, \eta)$

where \mathbb{A}, \mathbb{B} are countable subalgebras of $\mathcal{P}(\omega)/\operatorname{Fin}$ closed wrt σ, σ^{-1} , and $\mathbb{A} \subseteq \mathbb{B}$, and η is an embedding $(\mathbb{A}, \sigma^{-1}) \to (\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$.

Restatement of the lemma

An instance of the lifting problem is a 4-tuple $((\mathbb{A}, \sigma^{-1}), (\mathbb{B}, \sigma^{-1}), \iota, \eta)$

where \mathbb{A}, \mathbb{B} are countable subalgebras of $\mathcal{P}(\omega)/\operatorname{Fin}$ closed wrt σ, σ^{-1} , and $\mathbb{A} \subseteq \mathbb{B}$, and η is an embedding $(\mathbb{A}, \sigma^{-1}) \to (\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$.

A solution to this instance of the lifting problem is an embedding $\bar{\eta}$ of $(\mathbb{B}, \sigma^{-1})$ into $(\mathcal{P}(\omega)/\text{Fin}, \sigma)$ such that $\bar{\eta} \circ \iota = \eta$.

Restatement of the lemma

An instance of the lifting problem is a 4-tuple $((\mathbb{A}, \sigma^{-1}), (\mathbb{B}, \sigma^{-1}), \iota, \eta)$

where \mathbb{A}, \mathbb{B} are countable subalgebras of $\mathcal{P}(\omega)/\operatorname{Fin}$ closed wrt σ, σ^{-1} , and $\mathbb{A} \subseteq \mathbb{B}$, and η is an embedding $(\mathbb{A}, \sigma^{-1}) \to (\mathcal{P}(\omega)/\operatorname{Fin}, \sigma)$.

A solution to this instance of the lifting problem is an embedding $\bar{\eta}$ of $(\mathbb{B}, \sigma^{-1})$ into $(\mathcal{P}(\omega)/\text{Fin}, \sigma)$ such that $\bar{\eta} \circ \iota = \eta$.

Lifting Lemma: An instance $((\mathbb{A}, \sigma^{-1}), (\mathbb{B}, \sigma^{-1}), \iota, \eta)$ of the lifting problem has a solution if η is an elementary embedding.

Partitions are represented by digraphs

Suppose \mathcal{A} is a finite partition of $\mathcal{P}(\omega)/\text{Fin}$ (dually, a partition of ω^* into finitely many clopen sets).

Partitions are represented by digraphs

Suppose \mathcal{A} is a finite partition of $\mathcal{P}(\omega)/\text{Fin}$ (dually, a partition of ω^* into finitely many clopen sets). Then the action of σ on \mathcal{A} can be represented by a digraph $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$, where

$$a \xrightarrow{\sigma} b \qquad \Leftrightarrow \qquad \sigma(a) \wedge b \neq 0.$$

Partitions are represented by digraphs

Suppose \mathcal{A} is a finite partition of $\mathcal{P}(\omega)/\text{Fin}$ (dually, a partition of ω^* into finitely many clopen sets). Then the action of σ on \mathcal{A} can be represented by a digraph $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$, where

 $a \xrightarrow{\sigma} b \Leftrightarrow \sigma(a) \wedge b \neq 0.$

 $A = \{n \in \omega : n \text{ ends in a } 0, 3, \text{ or } 5\}$ $B = \{n \in \omega : n \text{ ends in a } 1\}$ $C = \{n \in \omega : n \text{ ends in a } 6, 7, \text{ or } 8\}$ $D = \{n \in \omega : n \text{ ends in a } 2, 4, \text{ or } 9\}$

A sequence $\langle v_0, v_1, \dots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \xrightarrow{\nu} \rangle$ is a *walk* if $v_i \xrightarrow{\nu} v_{i+1}$ for all i < n.

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is a *walk* if $v_i \xrightarrow{\mathcal{V}} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ from v to v'.

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is a *walk* if $v_i \xrightarrow{\mathcal{V}} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is a *walk* if $v_i \xrightarrow{\mathcal{V}} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

Suppose $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ is a strongly connected digraph.

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

A sequence $\langle v_0, v_1, \ldots, v_n \rangle$ of vertices in a digraph digraph $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is a *walk* if $v_i \stackrel{\mathcal{V}}{\longrightarrow} v_{i+1}$ for all i < n. $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ is *strongly connected* if for any $v, v' \in \mathcal{V}$, there is a walk in $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ from v to v'.

Lemma

A digraph is isomorphic to one of the form $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$ if and only if it is strongly connected (and similarly for σ^{-1}).

A sketch of the "if" direction:

For each i < k, put $A_i = \{n \colon n \equiv i \pmod{k}\} \in \mathcal{A}$.

Lemma

Suppose \mathcal{A} and \mathcal{B} are finite partitions of $\mathcal{P}(\omega)/\text{Fin.}$ If \mathcal{B} is a refinement of \mathcal{A} , then the natural mapping $\mathcal{B} \to \mathcal{A}$ is an epimorphism from $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$.

$$(A) \longleftrightarrow (B)$$

A = PrimesB = Composites

Not all epimorphisms correspond to refinements

Not all epimorphisms correspond to refinements

Let us say an epimorphism ϕ of a digraph $\langle \mathcal{V}, \rightarrow \rangle$ onto $\langle \mathcal{A}, \stackrel{\sigma}{\rightarrow} \rangle$ is *realizable* (as a refinement of \mathcal{A}) if there is a refinement \mathcal{B} of \mathcal{A} that mimics the epimorphism.

Let us say an epimorphism ϕ of a digraph $\langle \mathcal{V}, \rightarrow \rangle$ onto $\langle \mathcal{A}, \stackrel{\sigma}{\rightarrow} \rangle$ is *realizable* (as a refinement of \mathcal{A}) if there is a refinement \mathcal{B} of \mathcal{A} that mimics the epimorphism.
Given a finite partition \mathcal{A} of $\mathcal{P}(\omega)/_{\text{Fin}}$ and the corresponding digraph $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$, not all epimorphisms correspond to refinements of \mathcal{A} .

Let us say an epimorphism ϕ of a digraph $\langle \mathcal{V}, \rightarrow \rangle$ onto $\langle \mathcal{A}, \stackrel{\sigma}{\rightarrow} \rangle$ is *realizable* (as a refinement of \mathcal{A}) if there is a refinement \mathcal{B} of \mathcal{A} that mimics the epimorphism. Otherwise, ϕ is *unrealizable* with respect to \mathcal{A} .

Back to the lemma

Given an instance of the lifting problem, the countable structures $(\mathbb{A}, \sigma^{-1})$ and $(\mathbb{B}, \sigma^{-1})$ can be approximated by sequences of finite digraphs as on the previous slide.

Back to the lemma

Given an instance of the lifting problem, the countable structures $(\mathbb{A}, \sigma^{-1})$ and $(\mathbb{B}, \sigma^{-1})$ can be approximated by sequences of finite digraphs as on the previous slide.

The embedding η translates each finite partition \mathcal{A} of \mathbb{A} into a partition $\tilde{\mathcal{A}}$ of $\mathcal{P}(\omega)/\text{Fin}$, and the resulting digraphs are isomorphic:

$$\langle \mathcal{A}, \stackrel{\sigma^{-1}}{\longrightarrow} \rangle \cong \langle \tilde{\mathcal{A}}, \stackrel{\sigma}{\longrightarrow} \rangle \qquad \text{where} \qquad \tilde{\mathcal{A}} = \{\eta(\mathbf{a}): \mathbf{a} \in \mathcal{A}\}.$$

Suppose we can find $\bar{\eta}$ (solve the lifting problem).

Suppose we can find $\bar{\eta}$ (solve the lifting problem). Let \mathcal{A} be a finite partition of \mathbb{A} , and consider a partition \mathcal{B} of \mathbb{B} refining \mathcal{A} .

Suppose we can find $\bar{\eta}$ (solve the lifting problem). Let \mathcal{A} be a finite partition of \mathbb{A} , and consider a partition \mathcal{B} of \mathbb{B} refining \mathcal{A} .

There is an epimorphism from $\langle \mathcal{B}, \xrightarrow{\sigma^{-1}} \rangle$ to $\langle \tilde{\mathcal{A}}, \xrightarrow{\sigma} \rangle$.

Suppose we can find $\bar{\eta}$ (solve the lifting problem). Let \mathcal{A} be a finite partition of \mathbb{A} , and consider a partition \mathcal{B} of \mathbb{B} refining \mathcal{A} .

There is an epimorphism from $\langle \mathcal{B}, \xrightarrow{\sigma^{-1}} \rangle$ to $\langle \tilde{\mathcal{A}}, \xrightarrow{\sigma} \rangle$. And via $\bar{\eta}$, there is a refinement $\tilde{\mathcal{B}}$ of $\tilde{\mathcal{A}}$ that mimics this epimorphism.

Suppose we can find $\bar{\eta}$ (solve the lifting problem). Let \mathcal{A} be a finite partition of \mathbb{A} , and consider a partition \mathcal{B} of \mathbb{B} refining \mathcal{A} .

There is an epimorphism from $\langle \mathcal{B}, \xrightarrow{\sigma^{-1}} \rangle$ to $\langle \tilde{\mathcal{A}}, \xrightarrow{\sigma} \rangle$. And via $\bar{\eta}$, there is a refinement $\tilde{\mathcal{B}}$ of $\tilde{\mathcal{A}}$ that mimics this epimorphism. In other words, the epimorphism $\langle \mathcal{B}, \xrightarrow{\sigma^{-1}} \rangle$ to $\langle \tilde{\mathcal{A}}, \xrightarrow{\sigma} \rangle$ is realizable.

Suppose we can find $\bar{\eta}$ (solve the lifting problem). Let \mathcal{A} be a finite partition of \mathbb{A} , and consider a partition \mathcal{B} of \mathbb{B} refining \mathcal{A} .

There is an epimorphism from $\langle \mathcal{B}, \xrightarrow{\sigma^{-1}} \rangle$ to $\langle \tilde{\mathcal{A}}, \xrightarrow{\sigma} \rangle$. And via $\bar{\eta}$, there is a refinement $\tilde{\mathcal{B}}$ of $\tilde{\mathcal{A}}$ that mimics this epimorphism. In other words, the epimorphism $\langle \mathcal{B}, \xrightarrow{\sigma^{-1}} \rangle$ to $\langle \tilde{\mathcal{A}}, \xrightarrow{\sigma} \rangle$ is realizable.

Lemma

The converse is also true: If all the epimorphisms arising in this way via ι and η are realizable, then $\bar{\eta}$ exists.

Question: In a "finitary instance" of the lifting problem (right),

Question: In a "finitary instance" of the lifting problem (right),

must it be the case that ϕ is realizable as a refinement of $\tilde{\mathcal{A}}$?

Question: In a "finitary instance" of the lifting problem (right),

must it be the case that ϕ is realizable as a refinement of \hat{A} ? Answer: Generally, no.

Question: In a "finitary instance" of the lifting problem (right),

must it be the case that ϕ is realizable as a refinement of \hat{A} ? **Answer:** Generally, no. :(

Question: In a "finitary instance" of the lifting problem (right),

must it be the case that ϕ is realizable as a refinement of \tilde{A} ? **Answer:** Generally, no. :(

But if η is an elementary embedding, then yes!

Question: In a "finitary instance" of the lifting problem (right),

must it be the case that ϕ is realizable as a refinement of \tilde{A} ? **Answer:** Generally, no. :(

But if η is an elementary embedding, then *yes*! :)

Incompatible epimorphisms

Suppose $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$, $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$, and $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$ are strongly connected digraphs, and ϕ and ψ are epimorphisms from $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$ and from $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$, respectively.

Incompatible epimorphisms

Suppose $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$, $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$, and $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$ are strongly connected digraphs, and ϕ and ψ are epimorphisms from $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$ and from $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$, respectively. We say that ϕ and ψ are *compatible* if there is a fourth strongly connected digraph $\langle \mathcal{D}, \xrightarrow{\mathcal{D}} \rangle$ and epimorphisms $\overline{\phi}$ and $\overline{\psi}$ from $\langle \mathcal{D}, \xrightarrow{\mathcal{D}} \rangle$ to $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ and from $\langle \mathcal{D}, \xrightarrow{\mathcal{D}} \rangle$ to $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$, respectively, such that $\phi \circ \overline{\phi} = \psi \circ \overline{\psi}$.

Incompatible epimorphisms

Suppose $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$, $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$, and $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$ are strongly connected digraphs, and ϕ and ψ are epimorphisms from $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$ and from $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\mathcal{A}} \rangle$, respectively. We say that ϕ and ψ are *compatible* if there is a fourth strongly connected digraph $\langle \mathcal{D}, \xrightarrow{\mathcal{D}} \rangle$ and epimorphisms $\overline{\phi}$ and $\overline{\psi}$ from $\langle \mathcal{D}, \xrightarrow{\mathcal{D}} \rangle$ to $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ and from $\langle \mathcal{D}, \xrightarrow{\mathcal{D}} \rangle$ to $\langle \mathcal{C}, \xrightarrow{\mathcal{C}} \rangle$, respectively, such that $\phi \circ \overline{\phi} = \psi \circ \overline{\psi}$.

Otherwise ϕ and ψ are *incompatible*.

Suppose, aiming for a contradiction, that ϕ and ψ are compatible.

Suppose, aiming for a contradiction, that ϕ and ψ are compatible. Let $x \in \overline{\psi}^{-1}(c)$.

Suppose, aiming for a contradiction, that ϕ and ψ are compatible. Let $x \in \overline{\psi}^{-1}(c)$. There are some $v, w \in \overline{\psi}^{-1}(a)$ with $v \to x \to w$.

Suppose, aiming for a contradiction, that ϕ and ψ are compatible. Let $x \in \overline{\psi}^{-1}(c)$. There are some $v, w \in \overline{\psi}^{-1}(a)$ with $v \to x \to w$. Because $\overline{\phi}(v) = \overline{\phi}(w) = b$, we should have $b \to \overline{\phi}(x) \to b$.

Suppose, aiming for a contradiction, that ϕ and ψ are compatible. Let $x \in \overline{\psi}^{-1}(c)$. There are some $v, w \in \overline{\psi}^{-1}(a)$ with $v \to x \to w$. Because $\overline{\phi}(v) = \overline{\phi}(w) = b$, we should have $b \to \overline{\phi}(x) \to b$. But $\langle \mathcal{B}, \xrightarrow{\mathcal{B}} \rangle$ contains no such vertex.

Lemma

Given a partition \mathcal{A} of \mathbb{A} and its image $\tilde{\mathcal{A}}$ in $\mathcal{P}(\omega)/\text{Fin}$, any two epimorphisms arising naturally in the Lifting Lemma (any two finitary instances of the lifting problem) are compatible.

Lemma

Given a partition \mathcal{A} of \mathbb{A} and its image $\tilde{\mathcal{A}}$ in $\mathcal{P}(\omega)/\text{Fin}$, any two epimorphisms arising naturally in the Lifting Lemma (any two finitary instances of the lifting problem) are compatible.

Proof: Let \mathcal{D} be a common refinement of \mathcal{B} and \mathcal{C} , and let $\bar{\phi}$ and $\bar{\psi}$ be the natural maps from \mathcal{D} onto \mathcal{B} and \mathcal{C} , respectively. \Box

Lemma

Given a partition \mathcal{A} of \mathbb{A} and its image $\tilde{\mathcal{A}}$ in $\mathcal{P}(\omega)/\text{Fin}$, any two epimorphisms arising naturally in the Lifting Lemma (any two finitary instances of the lifting problem) are compatible.

Proof: Let \mathcal{D} be a common refinement of \mathcal{B} and \mathcal{C} , and let $\bar{\phi}$ and $\bar{\psi}$ be the natural maps from \mathcal{D} onto \mathcal{B} and \mathcal{C} , respectively. \Box

In other words, the epimorphisms that we actually encounter in the lifting problem are always compatible with one another.

Let \mathcal{A} be a finite partition of $\mathcal{P}(\omega)/\text{Fin}$, and let ϕ be an epimorphism from a strongly connected digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$.

Let \mathcal{A} be a finite partition of $\mathcal{P}(\omega)/\operatorname{Fin}$, and let ϕ be an epimorphism from a strongly connected digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$. Either

1. ϕ is realizable as a refinement of \mathcal{A}

Let \mathcal{A} be a finite partition of $\mathcal{P}(\omega)/\operatorname{Fin}$, and let ϕ be an epimorphism from a strongly connected digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$. Either

- 1. ϕ is realizable as a refinement of \mathcal{A} , or
- 2. there is a refinement C of A such that the natural map $C \to A$ is incompatible with ϕ .

Let \mathcal{A} be a finite partition of $\mathcal{P}(\omega)/\text{Fin}$, and let ϕ be an epimorphism from a strongly connected digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$. Either

- 1. ϕ is realizable as a refinement of \mathcal{A} , or
- 2. there is a refinement C of A such that the natural map $C \to A$ is incompatible with ϕ .

The role of elementarity

Consider some finitary instance of the lifting problem.

The role of elementarity

Consider some finitary instance of the lifting problem.

The Lifting Lemma holds if and only if all such epimorphisms are realizable (i.e., option 1 from the Dichotomy Theorem holds).
Consider some finitary instance of the lifting problem.

The Lifting Lemma holds if and only if all such epimorphisms are realizable (i.e., option 1 from the Dichotomy Theorem holds).

Aiming for a contradiction, suppose ϕ is not realizable.

Consider some finitary instance of the lifting problem.

The Lifting Lemma holds if and only if all such epimorphisms are realizable (i.e., option 1 from the Dichotomy Theorem holds).

Aiming for a contradiction, suppose ϕ is not realizable. By the Dichotomy Theorem, there is a refinement \tilde{C} of \tilde{A} incompatible with ϕ .

Consider some finitary instance of the lifting problem.

The Lifting Lemma holds if and only if all such epimorphisms are realizable (i.e., option 1 from the Dichotomy Theorem holds).

Aiming for a contradiction, suppose ϕ is not realizable. By the Dichotomy Theorem, there is a refinement \tilde{C} of $\tilde{\mathcal{A}}$ incompatible with ϕ . But η is elementary! Thus, because \tilde{C} refines $\tilde{\mathcal{A}} = \eta[\mathcal{A}]$ in $\mathcal{P}(\omega)/_{\text{Fin}}$, \mathcal{A} must have an identical-looking refinement C in \mathbb{A} .

Consider some finitary instance of the lifting problem.

The Lifting Lemma holds if and only if all such epimorphisms are realizable (i.e., option 1 from the Dichotomy Theorem holds).

Aiming for a contradiction, suppose ϕ is not realizable. By the Dichotomy Theorem, there is a refinement \tilde{C} of \tilde{A} incompatible with ϕ . But η is elementary! Thus, because \tilde{C} refines $\tilde{A} = \eta[\mathcal{A}]$ in $\mathcal{P}(\omega)/\text{Fin}$, \mathcal{A} must have an identical-looking refinement \mathcal{C} in \mathbb{A} . Then \mathcal{B} and \mathcal{C} are two incompatible refinements of \mathcal{A} .

Consider some finitary instance of the lifting problem.

The Lifting Lemma holds if and only if all such epimorphisms are realizable (i.e., option 1 from the Dichotomy Theorem holds).

Aiming for a contradiction, suppose ϕ is not realizable. By the Dichotomy Theorem, there is a refinement \tilde{C} of \tilde{A} incompatible with ϕ . But η is elementary! Thus, because \tilde{C} refines $\tilde{A} = \eta[A]$ in $\mathcal{P}(\omega)/\text{Fin}$, A must have an identical-looking refinement C in \mathbb{A} . Then \mathcal{B} and C are two incompatible refinements of A. Impossible!

To get some idea of the proof of the Dichotomy Theorem, fix a partition \mathcal{A} of $\mathcal{P}(\omega)/_{\mathrm{Fin}}$

To get some idea of the proof of the Dichotomy Theorem, fix a partition \mathcal{A} of $\mathcal{P}(\omega)/\text{Fin}$, and let ϕ be an epimorphism from a strongly connected digraph $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$ to $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$.

Suppose alternative 1 fails: i.e., there is no refinement \mathcal{B} of \mathcal{A} in $\mathcal{P}(\omega)/_{\text{Fin}}$ such that the natural map $\mathcal{B} \to \mathcal{A}$ mimics ϕ .

The partition \mathcal{A} is not recoverable from the isomorphism class of its digraph $\langle \mathcal{A}, \xrightarrow{\sigma} \rangle$.

The partition \mathcal{A} is not recoverable from the isomorphism class of its digraph $\langle \mathcal{A}, \stackrel{\sigma}{\longrightarrow} \rangle$. But it can be recovered from $\langle \mathcal{A}, \stackrel{\sigma}{\longrightarrow} \rangle$ plus a specific infinite walk through $\langle \mathcal{A}, \stackrel{\sigma}{\longrightarrow} \rangle$.

The failure of alternative 1 means that there is no infinite walk through $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$ that follows our walk through $\langle \mathcal{A}, \stackrel{\sigma}{\longrightarrow} \rangle$, or even that follows it with finitely many errors.

Using this, we must find a partition C of A such that the natural map from $\langle C, \xrightarrow{\sigma} \rangle$ to $\langle A, \xrightarrow{\sigma} \rangle$ is incompatible with ϕ .

The rough idea is that the finite digraph $\langle \mathcal{C}, \xrightarrow{\sigma} \rangle$ must encode all the different ways in which a walker in $\langle \mathcal{V}, \xrightarrow{\nu} \rangle$ can get lost.

An important piece of C is the *state space* digraph arising from ϕ .

An important piece of C is the *state space* digraph arising from ϕ .

Roughly, this digraph keeps track not of the individual vertices in a walk through $\langle \mathcal{V}, \xrightarrow{\mathcal{V}} \rangle$, but the set of possible vertices where a "follower" might be at a given time.

An important piece of C is the *state space* digraph arising from ϕ .

Roughly, this digraph keeps track not of the individual vertices in a walk through $\langle \mathcal{V}, \stackrel{\mathcal{V}}{\longrightarrow} \rangle$, but the set of possible vertices where a "follower" might be at a given time. The digraph $\langle \mathcal{C}, \stackrel{\sigma}{\longrightarrow} \rangle$ combines this state space with an isomorphic copy of $\langle \mathcal{A}, \stackrel{\sigma}{\longrightarrow} \rangle$.

Thank you for listening! Any questions?