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Statement of the lemma

Recall from the last talk the statement of the key lemma:

Lemma (the Lifting Lemma)

Let (A, σ−1) and (B, σ−1) be countable substructures of

(P(ω)/Fin, σ−1) with A ⊆ B, and suppose η is an elementary

embedding from (A, σ−1) into (P(ω)/Fin, σ). Then η extends to an

embedding η̄ of (B, σ−1) into (P(ω)/Fin, σ), with η̄ ◦ ι = η.

(A, σ−1)

(P(ω)/Fin, σ)(B, σ−1)

ι

η̄

η

The goal of this talk is to discuss some of the ideas that go into

the proof of this lemma.
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Restatement of the lemma

An instance of the lifting problem is a 4-tuple(
(A, σ−1), (B, σ−1), ι, η

)
where A,B are countable subalgebras of P(ω)/Fin closed wrt σ,σ−1,

and A ⊆ B, and η is an embedding (A, σ−1) → (P(ω)/Fin, σ).

(A, σ−1)

(P(ω)/Fin, σ)(B, σ−1)

ι η

η̄

A solution to this instance of the lifting problem is an embedding η̄

of (B, σ−1) into (P(ω)/Fin, σ) such that η̄ ◦ ι = η.

Lifting Lemma: An instance
(
(A, σ−1), (B, σ−1), ι, η

)
of the

lifting problem has a solution if η is an elementary embedding.
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Partitions are represented by digraphs

Suppose A is a finite partition of P(ω)/Fin (dually, a partition of ω∗

into finitely many clopen sets).

Then the action of σ on A can be

represented by a digraph ⟨A, σ−→⟩, where

a σ−→ b ⇔ σ(a) ∧ b ̸= 0.

[A]

[D]

[C ][B]

A = {n ∈ ω : n ends in a 0, 3, or 5}
B = {n ∈ ω : n ends in a 1}
C = {n ∈ ω : n ends in a 6, 7, or 8}
D = {n ∈ ω : n ends in a 2, 4, or 9}
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Specifically, by strongly connected digraphs

A sequence ⟨v0, v1, . . . , vn⟩ of vertices in a digraph digraph ⟨V, V−→⟩
is a walk if vi

V−→ vi+1 for all i < n.

⟨V, V−→⟩ is strongly connected

if for any v , v ′ ∈ V, there is a walk in ⟨V, V−→⟩ from v to v ′.

Lemma

A digraph is isomorphic to one of the form ⟨A, σ−→⟩ if and only if it

is strongly connected (and similarly for σ−1).

A sketch of the “if” direction:

Suppose ⟨V, V−→⟩ is a strongly connected digraph.Find a walk ⟨v0, v1, . . . , vk⟩ with v0 = vk that crosses every edge.For each i < k , put Ai = {n : n ≡ i (modk)} ∈ A. □
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Finer partitions = richer digraphs

Given two digraphs ⟨A, A−→⟩ and ⟨B, B−→⟩, an epimorphism from

⟨B, B−→⟩ to ⟨A, A−→⟩ is a surjective map ϕ : B → A such that

a A−→ a′ if and only if there are some b ∈ ϕ−1(a) and b′ ∈ ϕ−1(a′)

with b B−→ b′.

⟨A, A−→⟩⟨A, A−→⟩

⟨B, B−→⟩

Lemma

Suppose A and B are finite partitions of P(ω)/Fin. If B is a

refinement of A, then the natural mapping B → A is an

epimorphism from ⟨B, B−→⟩ to ⟨A, A−→⟩.
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Not all epimorphisms correspond to refinements

Given a finite partition A of P(ω)/Fin and the corresponding digraph

⟨A, σ−→⟩, not all epimorphisms correspond to refinements of A.

A = Primes

B = Composites

[A] [B]

ϕ

ψ

Let us say an epimorphism ϕ of a digraph ⟨V,→⟩ onto ⟨A, σ−→⟩ is
realizable (as a refinement of A) if there is a refinement B of A
that mimics the epimorphism. Otherwise, ϕ is unrealizable with

respect to A.
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Finitary instances of the Lifting Lemma

Suppose we can find η̄ (solve the lifting problem).

Let A be a

finite partition of A, and consider a partition B of B refining A.
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⟨B̃, σ−→⟩∼=
induced
by η̄

There is an epimorphism from ⟨B, σ–1−−→⟩ to ⟨Ã, σ−→⟩. And via η̄,

there is a refinement B̃ of Ã that mimics this epimorphism. In

other words, the epimorphism ⟨B, σ–1−−→⟩ to ⟨Ã, σ−→⟩ is realizable.

Lemma

The converse is also true: If all the epimorphisms arising in this

way via ι and η are realizable, then η̄ exists.
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Lemma

The converse is also true: If all the epimorphisms arising in this

way via ι and η are realizable, then η̄ exists.



Finitary instances of the Lifting Lemma

Suppose we can find η̄ (solve the lifting problem). Let A be a

finite partition of A, and consider a partition B of B refining A.

(A, σ−1)

(P(ω)/Fin, σ)(B, σ−1)

ι

η̄

η

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
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Elementarity, my dear Watson

Thus the proof of the Lifting Lemma reduces to:

Question: In a “finitary instance” of the lifting problem (right),

(A, σ−1)

(P(ω)/Fin, σ)(B, σ−1)

ι η

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
induced
by η

⟨B, σ–1−−→⟩

natural
epimorphism

ϕ

must it be the case that ϕ is realizable as a refinement of Ã?

Answer: Generally, no. :(

But if η is an elementary embedding, then yes! :)
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Answer: Generally, no. :(

But if η is an elementary embedding, then yes! :)



Elementarity, my dear Watson

Thus the proof of the Lifting Lemma reduces to:

Question: In a “finitary instance” of the lifting problem (right),

(A, σ−1)

(P(ω)/Fin, σ)(B, σ−1)

ι η

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
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Answer: Generally, no.

:(

But if η is an elementary embedding, then yes! :)



Elementarity, my dear Watson

Thus the proof of the Lifting Lemma reduces to:

Question: In a “finitary instance” of the lifting problem (right),

(A, σ−1)

(P(ω)/Fin, σ)(B, σ−1)

ι η

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
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Incompatible epimorphisms

Suppose ⟨A, A−→⟩, ⟨B, B−→⟩, and ⟨C, C−→⟩ are strongly connected

digraphs, and ϕ and ψ are epimorphisms from ⟨B, B−→⟩ to ⟨A, A−→⟩
and from ⟨C, C−→⟩ to ⟨A, A−→⟩, respectively.

We say that ϕ and ψ

are compatible if there is a fourth strongly connected digraph

⟨D, D−→⟩ and epimorphisms ϕ̄ and ψ̄ from ⟨D, D−→⟩ to ⟨B, B−→⟩ and
from ⟨D, D−→⟩ to ⟨C, C−→⟩, respectively, such that ϕ ◦ ϕ̄ = ψ ◦ ψ̄.

⟨A, A−→⟩

⟨C, C−→⟩⟨B, B−→⟩

ϕ ψ

⟨D, D−→⟩
ϕ̄ ψ̄

Otherwise ϕ and ψ are incompatible.
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An example of incompatible epimorphisms

⟨B, B−→⟩ ⟨C, C−→⟩

ϕ ψ

ϕ̄ ψ̄

?? ?

a

c

xv

w

b

Suppose, aiming for a contradiction, that ϕ and ψ are compatible.

Let x ∈ ψ̄−1(c). There are some v ,w ∈ ψ̄−1(a) with v → x → w .

Because ϕ̄(v) = ϕ̄(w) = b, we should have b → ϕ̄(x) → b.

But ⟨B, B−→⟩ contains no such vertex.
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The relevant epimorphisms are always compatible.

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
induced
by η

⟨B, σ–1−−→⟩

natural
epimorphism

ϕ

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
induced
by η

⟨C, σ–1−−→⟩

natural
epimorphism

ψ

Lemma

Given a partition A of A and its image Ã in P(ω)/Fin, any two

epimorphisms arising naturally in the Lifting Lemma (any two

finitary instances of the lifting problem) are compatible.

Proof: Let D be a common refinement of B and C, and let ϕ̄ and

ψ̄ be the natural maps from D onto B and C, respectively. □

In other words, the epimorphisms that we actually encounter in the

lifting problem are always compatible with one another.
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A dichotomy for finite fragments of (P(ω)/Fin, σ)

Theorem (Dichotomy Theorem)

Let A be a finite partition of P(ω)/Fin, and let ϕ be an epimorphism

from a strongly connected digraph ⟨V, V−→⟩ to ⟨A, σ−→⟩.

Either

1. ϕ is realizable as a refinement of A, or

2. there is a refinement C of A such that the natural map

C → A is incompatible with ϕ.

⟨A, σ−→⟩

⟨V, V−→⟩

ϕϕ

⟨B, σ−→⟩

natural
map

∼=⟨B, σ−→⟩

natural
map

∼= ⟨C, σ−→⟩

natural
map

⟨C, σ−→⟩

natural
map
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The role of elementarity

Consider some finitary instance of the lifting problem.

⟨A, σ–1−−→⟩ ⟨Ã, σ−→⟩∼=
induced
by η

⟨B, σ–1−−→⟩

ϕ

⟨C̃, σ−→⟩

natural
map

natural
map

⟨C, σ–1−−→⟩∼=
induced
by η

The Lifting Lemma holds if and only if all such epimorphisms are

realizable (i.e., option 1 from the Dichotomy Theorem holds).

Aiming for a contradiction, suppose ϕ is not realizable. By the

Dichotomy Theorem, there is a refinement C̃ of Ã incompatible

with ϕ. But η is elementary! Thus, because C̃ refines Ã = η[A] in
P(ω)/Fin, A must have an identical-looking refinement C in A.
Then B and C are two incompatible refinements of A. Impossible!
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P(ω)/Fin, A must have an identical-looking refinement C in A.
Then B and C are two incompatible refinements of A. Impossible!



But how do you prove the Dichotomy Theorem?

To get some idea of the proof of the Dichotomy Theorem, fix a

partition A of P(ω)/Fin

, and let ϕ be an epimorphism from a

strongly connected digraph ⟨V, V−→⟩ to ⟨A, σ−→⟩.

Suppose alternative 1 fails: i.e., there is no refinement B of A in
P(ω)/Fin such that the natural map B → A mimics ϕ.

The partition A is not recoverable from the isomorphism class of

its digraph ⟨A, σ−→⟩. But it can be recovered from ⟨A, σ−→⟩ plus a
specific infinite walk through ⟨A, σ−→⟩.

The failure of alternative 1 means that there is no infinite walk

through ⟨V, V−→⟩ that follows our walk through ⟨A, σ−→⟩, or even
that follows it with finitely many errors.

In other words, if we imagine someone walking through ⟨V, V−→⟩,
trying to follow our specific walk in ⟨A, σ−→⟩, then they get “lost”

after finitely many steps, regardless of when they started following.

Using this, we must find a partition C of A such that the natural

map from ⟨C, σ−→⟩ to ⟨A, σ−→⟩ is incompatible with ϕ.

The rough idea is that the finite digraph ⟨C, σ−→⟩ must encode all

the different ways in which a walker in ⟨V, V−→⟩ can get lost.
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Roughly, this digraph keeps track not of the individual vertices in a

walk through ⟨V, V−→⟩, but the set of possible vertices where a

“follower” might be at a given time. The digraph ⟨C, σ−→⟩
combines this state space with an isomorphic copy of ⟨A, σ−→⟩.
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Thank you for listening!

Any questions?


