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Automorphisms of P(ω)

Let P(ω) denote the power set of ω. This is a Boolean algebra,

and its Stone dual is βω, the Čech-Stone compactification of the

countable discrete space ω.

Every bijection f : ω → ω induces an automorphism of P(ω):

αf (A) = f ”(A)

for all A ⊆ ω. (Dually, f induces a self-homeomorphism of βω.)

Conversely, if α : P(ω) → P(ω) is an automorphism, then it maps

atoms to atoms (singletons to singletons), and thus there is a

bijection fα : ω → ω such that α = αfα . In particular,

1. the automorphism group Aut(P(ω)),

2. the homeomorphism group H(βω), and

3. the permutation group Sω

are naturally isomorphic to one another.
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Trivial automorphisms of P(ω)/Fin

The Boolean algebra P(ω)/Fin is the quotient of P(ω) by the ideal

of finite sets.

Its Stone space is ω∗ = βω \ ω, the Čech-Stone

remainder of ω.

An almost permutation of ω is a bijection from one co-finite subset

of ω to another. Every almost permutation of ω induces an

automorphism of P(ω)/Fin:

αf ([A]Fin) = [f ”(A)]Fin

for all A ⊆ ω. For example, the shift map is the automorphism

σ([A]Fin) = [A+ 1]Fin

induced by the successor function n 7→ n + 1.

The automorphisms of P(ω)/Fin induced in this way are called

trivial automorphisms. The corresponding self-homeomorphisms of

ω∗ are called the trivial self-homeomorphisms.
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Trivial automorphisms of P(ω)/Fin

Thus there is a natural correspondence between

1. the group Triv(P(ω)/Fin) of trivial automorphisms of P(ω)/Fin,

2. the group of trivial self-homeomorphisms of ω∗, and

3. the group of almost permutations of ω (sort of).

What about the groups Aut(P(ω)/Fin) and H(ω∗)? These two

groups are naturally isomorphic (via Stone duality), but do they

contain nontrivial elements?

There are c almost bijections ω → ω, so there are at most c trivial

automorphisms of P(ω)/Fin.

Theorem (W. Rudin, 1956)

The Continuum Hypothesis implies there are 2c automorphisms of
P(ω)/Fin. In particular, CH implies there are many nontrivial

automorphisms of P(ω)/Fin.
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Trivial automorphisms of P(ω)/Fin

Theorem (Shelah, 1979)

It is consistent that all automorphisms of P(ω)/Fin are trivial.

Later work has strengthened Shelah’s result in several ways:

• (Shelah and Steprāns, 1988) PFA implies all automorphisms

of P(ω)/Fin are trivial.

• (Veličković, 1992) OCA +MA implies all automorphisms of
P(ω)/Fin are trivial (and MA alone does not).

• (Farah, 2000) OCA +MA imposes strong restrictions on all

continuous self-maps of ω∗ (not just self-homeomorphisms),

and there is a sense in which they are all nearly trivial.

• (Dow, 2022) It is consistent with arbitrarily large values of c

that all automorphisms of P(ω)/Fin are trivial.

• (Farah, Moore, and Vignati, 2024) OCA implies all

automorphisms of P(ω)/Fin are trivial.
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When are two automorphisms the same?

Two automorphisms α and β of P(ω)/Fin are conjugate if there is a

third automorphism γ such that γ ◦ α = β ◦ γ.

P(ω)/Fin P(ω)/Fin

P(ω)/Fin P(ω)/Fin
α

β

γ γ

We may view an automorphism, together with the Boolean algebra

it acts on, as an algebraic dynamical system. Conjugacy is the

natural notion of isomorphism in the category of dynamical

systems: α and β are conjugate if they are essentially the same.

Question (van Douwen, 1983)

Are σ and σ−1 conjugate?

In other words, can P(ω)/Fin tell its right from its left?
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Is the shift map conjugate to its inverse?

Theorem (van Douwen, 1983)

If γ is a conjugacy mapping between σ and σ−1 (i.e., γ is an

automorphism such that γ ◦ σ = σ−1 ◦ γ), then γ is nontrivial.

To see why, consider an almost bijection f : ω → ω. Call n ∈ ω

“good” if f (n + 1) = f (n)− 1, and otherwise call n “bad”.

• • • • • • • • . . .

• • • • • • • • . . .

Every good point n is followed by < f (n) more good points. This

implies there are infinitely many bad points. Among these, we can

find an infinite set B such that f [B + 1] ∩ (f [B]− 1) = ∅, which
means in particular that αf ◦ σ([B]Fin) ̸= σ−1 ◦ αf ([B]Fin).
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A back-and-forth argument

At one level, the proof uses a back-and-forth style argument.

In its simplest form, this is the kind of argument used to show that

any two countable dense subsets of R are order-isomorphic.

(X ,≤)

a0a1 a2a3

(Y ,≤)

b0b1 b2b3

This arguments relies on two facts:

• We can well order both X and Y so that all initial segments

are finite (order type ω).

• For any finite partial isomorphism ϕ0 : (F ,≤) → (G ,≤),

where F and G are finite subsets of X and Y respectively, and

for any given x ∈ X \F , there is an extension of ϕ0 to F ∪{x}
(and similarly when the roles of X and Y are interchanged).
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A transfinite version

To prove our theorem via a similar back-and-forth argument, we

would like for the following two analogous things to be true:

• We can well order P(ω)/Fin so that all initial segments are

countable (order type ω1).

• For any partial isomorphism ϕ0 : (A, σ−1) → (B, σ) between
countable substructures of (P(ω)/Fin, σ−1) and (P(ω)/Fin, σ),

and given x ∈ P(ω)/Fin, ϕ0 extends to some A′ ⊇ A0 ∪ {x}
(and similarly when the roles of σ and σ−1 are interchanged).

The first item is equivalent to CH, because |P(ω)/Fin| = c.

(A, σ−1)

(P(ω)/Fin, σ)(A′, σ−1)

ι
ϕ0

The second item asks for a kind of

“lifting property” for (P(ω)/Fin, σ):

given two embeddings as shown,

is there an embedding of (A′, σ−1)

that completes the diagram?

?
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Not so fast . . .

A very annoying fact:

The second bullet point on the previous slide is not generally true.

More precisely, there is a countable substructure (A, σ−1) of

(P(ω)/Fin, σ−1), and an x ∈ P(ω)/Fin \ A, and an embedding η of

(A, σ−1) into (P(ω)/Fin, σ) such that if A′ ⊇ A ∪ {x} then there is

no embedding η̄ of (A′, σ−1) into (P(ω)/Fin, σ) with η̄ ◦ ι = η.

(A, σ−1)

(P(ω)/Fin, σ)(A′, σ−1)

ι
η
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A workaround

In other words, some of the tasks that need doing in our transfinite

back-and-forth argument are undoable.

To cope with this reality,

we will do the transfinite recursion more carefully, so as to avoid

ever running into any undoable instances of this lifting problem.

Lemma (the Lifting Lemma)

Let (A, σ−1) and (A′, σ−1) be countable substructures of

(P(ω)/Fin, σ−1) with A ⊆ A′, and suppose η is an elementary

embedding from (A, σ−1) into (P(ω)/Fin, σ). Then η extends to an

embedding η̄ of (A′, σ−1) into (P(ω)/Fin, σ), with η̄ ◦ ι = η.

(A, σ−1)

(P(ω)/Fin, σ)(A′, σ−1)

ι

η̄

η

In particular, η̄ exists if

(η[A], σ−1) ≺ (P(ω)/Fin, σ−1).
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A better back-and-forth argument

1. Prove that the Lifting Lemma can work in either direction; i.e.,

it still holds when the roles of σ and σ−1 are interchanged.

2. Using CH, well order P(ω)/Fin in order type ω1.

3. Begin the recursion by fixing a countable elementary

substructure of (P(ω)/Fin, σ).

(P(ω)/Fin, σ) (P(ω)/Fin, σ−1)
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A better back-and-forth argument

(P(ω)/Fin, σ) (P(ω)/Fin, σ−1)

4. Embed this structure into (P(ω)/Fin, σ−1).

Unfortunately, we

have no way to guarantee this embedding is elementary.

5. This embedding is a partial isomorphism, and can be viewed

as a partial isomorphism in the other direction.

6. Find a countable elementary substructure of (P(ω)/Fin, σ−1)
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12. At stage α, be sure that the elementary substructure used on

each side contains the αth member of P(ω)/Fin (according to

the well order fixed at the beginning of the proof).
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A corollary

In the end, this construction produces an isomorphism between

(P(ω)/Fin, σ) and (P(ω)/Fin, σ−1).

The only use of CH in the proof is to ensure that our partial

isomorphisms have domain and range equal to all of P(ω)/Fin

(include element α at stage α). Even without CH, if we run the

proof for ω stages then, taking unions on both sides, we get

countable elementary substructures of (P(ω)/Fin, σ) and

(P(ω)/Fin, σ−1) and an isomorphism between them. Hence:

Corollary

It is consistent that all automorphisms of P(ω)/Fin are trivial.

Note that this is a result of ZFC (no CH required).
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Thank you for listening!

Any questions?


