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P Cw¥,

A p.o. Pis called a Suslin ccc forcing notion if it is ccc and

<pC w¥ X w¥, and

1pC w¥ x w¥
are all analytic sets.
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A p.o. Pis called a Suslin ccc forcing notion if it is ccc and
P Cw¥,

<pC w¥ X w¥, and
1pC w¥ x wv

are all analytic sets.

Assume M |= ZFC. If the parameters in the definition of P, <p,

and Lp are in M, we may interpret P in M. Denote this
interpretation by PV,
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Suslin ccc forcing

A p.o. P is called a Suslin ccc forcing notion if it is ccc and
P Cw¥,
<pC w* X w*, and
1pC w¥ x wv
are all analytic sets.
Assume M |= ZFC. If the parameters in the definition of P, <p,
and Lp are in M, we may interpret P in M. Denote this

interpretation by PM.

Assume M C N. By Z% absoluteness, the statements p € P,
g <p p and p Lp g are absolute between M and N.
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Hechler forcing D:

o Conditions: pairs (s, f) with f € w* and s C f finite
@ Order: (t,g) < (s,f)

if t Osand g > f (everywhere)
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Hechler forcing D:

o Conditions: pairs (s, f) with f € w* and s C f finite
@ Order: (t,g) < (s,f)
Properties:

@ o-centered (thus ccc)

if t Osand g > f (everywhere)
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Examples for Suslin ccc forcing 1

Hechler forcing D:
@ Conditions: pairs (s, f) with f € w* and s C f finite
@ Order: (t,g) < (s,f) iftDsandg > f (everywhere)
Properties:
@ o-centered (thus ccc)
@ adds a generic Hechler real
d= U{s . there is f € W such that (s,f) € G}
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Examples for Suslin ccc forcing 1

Hechler forcing D:

@ Conditions: pairs (s, f) with f € w* and s C f finite

@ Order: (t,g) < (s,f) iftDsandg > f (everywhere)
Properties:

@ o-centered (thus ccc)

@ adds a generic Hechler real
d= U{s . there is f € w” such that (s,f) € G}
@ d is a dominating real,

i.e. f <*d for every f € w* from the ground model.
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Check D is Suslin ccc:
Then:

identify D with w x w* = w* via (s, f) — (s, f).
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Check D is Suslin ccc:

identify D with w x w* = w* via (s, f) — (s, f).

@ the order is a closed relation
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Check D is Suslin ccc:
Then:

identify D with w x w* = w¥ via (s, f) — (|s|, f).
@ the order is a closed relation

@ (s,f) and (t,g) are incompatible iff
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Check D is Suslin ccc:
Then:

identify D with w x w* = w¥ via (s, f) — (|s|, f).
@ the order is a closed relation

@ (s,f) and (t,g) are incompatible iff

o either s and t are incomparable (a clopen relation)
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Examples for Suslin ccc forcing 2

Check D is Suslin ccc:
identify D with w x w* = w* via (s, f) — (|s|, f).
Then:
@ the order is a closed relation
e (s,f) and (t,g) are incompatible iff
o either s and t are incomparable (a clopen relation)

& or one extends the other, say s C t for simplicity, and
t(n) < f(n) for some n (again a clopen relation).
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Amoeba forcing A:
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o Conditions: open sets U C 2“ of measure less than
@ Order: V< UIiffVDU

1

2



Amoeba forcing A:

o Conditions: open sets U C 2“ of measure less than
@ Order: V< UIiffVDU

Properties:

@ o-linked (thus ccc)

1

2
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Amoeba forcing A:

o Conditions: open sets U C 2“ of measure less than
@ Order: V< UIiffVDU
Properties:

@ o-linked (thus ccc)

1

2
@ adds an open subset a = |J G of 2* of measure
(an amoeba real)

1

2
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Amoeba forcing A:

o Conditions: open sets U C 2“ of measure less than 1

2
® Order: V< UIiff VDU

Properties:
@ o-linked (thus ccc)

@ adds an open subset a = | J G of 2“ of measure %

(an amoeba real)

@ makes union of ground model null sets a null set
(because X C a+ r for every ground model null X and every
rational r)
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Examples for Suslin ccc forcing 3

Amoeba forcing A:

o Conditions: open sets U C 2* of measure less than 3
@ Order: V< UIff VDU

Properties:

NI

@ o-linked (thus ccc)

@ adds an open subset a = | J G of 2% of measure 1

2
(an amoeba real)

@ makes union of ground model null sets a null set
(because X C a+ r for every ground model null X and every
rational r)

Coding open sets by reals we see that A is Suslin ccc.

Jorg Brendle Aspects of iterated forcing



Let M C N be ZFC-models. Let P € M be Suslin ccc.
therefore absolute between M and N.

Then “A is a maximal antichain in P is a £} U N} statement, and

If P is a Borel set, being a maximal antichain is in fact N}.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M C N be ZFC-models. Let P € M be Suslin ccc.

Then “A is a maximal antichain in P is a £} U N} statement, and
therefore absolute between M and N.

If P is a Borel set, being a maximal antichain is in fact MN}.

Proof: ccc: antichains are countable and coded by reals.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M C N be ZFC-models. Let P € M be Suslin ccc.

Then “A is a maximal antichain in P is a £} U N} statement, and
therefore absolute between M and N.

IfP is a Borel set, being a maximal antichain is in fact MN3.

Proof: ccc: antichains are countable and coded by reals.
Let A= {x,:n€w} CP. Aisa maximal antichain iff

® x, Lp xp for all n £ m and,

o for all y, either y ¢ PP or there is n such that y tp x,.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M C N be ZFC-models. Let P € M be Suslin ccc.

Then “A is a maximal antichain in P is a £} U N} statement, and
therefore absolute between M and N.

IfP is a Borel set, being a maximal antichain is in fact MN3.

Proof: ccc: antichains are countable and coded by reals.
Let A= {x,:n€w} CP. Aisa maximal antichain iff

® x, Lp xp for all n £ m and,
o for all y, either y ¢ PP or there is n such that y tp x,.

The first part is X1, while the second is M}. Thus X1 absoluteness
applies. I
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Let M C N be ZFC-models. Let P € M be Suslin ccc.

If G is PN-generic over N, then G N M is PM-generic over M.
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Let M C N be ZFC-models. Let P € M be Suslin ccc.
If G is PN-generic over N, then G N M is PM-generic over M.

Proof: Let A € M be a maximal antichain of PP in M.

By previous lemma: A maximal antichain of P in N.
Hence GNA#(. O
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Let Pp<o P; be p.o.’s. Let (@,- be P;-names for p.o.’s such that

Py I Qo - Ql and all maximal antichains of Qo in VP are
maximal antichains of Qq in VF1.

Then Py x Qg<o P1 x Q.
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Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let Pp<o IP; be p.o.’s. Let Q,- be P;-names for p.o.’s such that
Py IF Qo C Ql and all maximal antichains of@g in VPo are
maximal antichains of Qq in VF1.

Then Py @0<O Py % Ql.

Proof: Let A be a maximal antichain in Po * Q.
Need to show: A sti_II maximal in P; x Q1.
Let (p°, ¢%) € P; x Q.
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Lemma (preservation of embeddability in iterations)

Let Pp<o IP; be p.o.’s. Let Q,- be P;-names for p.o.’s such that
Py IF @0 C Ql and all maximal antichains of@g in VPo are
maximal antichains of Qq in VF1.

Then Py % @0<O P % Ql.

Proof: Let A be a maximal antichain in PO*QO.
Need to show: A still maximal in P; *Ql.

Let (p°, ¢°) € Py % Q.

Fix P1-generic filter G over V containing p°.

By assumption, G NPy is Pg-generic over V.

In V[G NPy, let

B={qe€Qo:3(p,g) € Awith pe G and g = g[G N Py]}.
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Check: B is a maximal antichain in Qg in V[G N P]!
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Check: B is a maximal antichain in Qg in V[G N P]!
By assumption, B maximal in Q1 in V[G].

Hence there is g € B compatible with g°[G].

Let (p, g) € A witness g = ¢[G N Py] € B.
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Check: B is a maximal antichain in Qg in V[G N P]!

By assumption, B maximal in Q1 in V[G].

Hence there is g € B compatible with ¢°[G].

Let (p, q) € A witness g = g[G NPy € B.

There is p € G forcing that g and ¢° are compatible, with common

extension §. Wlog p < p, p’. Then (. ) < (. ). (p°, ¢°). O
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Check: B is a maximal antichain in Qg in V[G N P]!

By assumption, B maximal in Q1 in V[G].

Hence there is g € B compatible with ¢°[G].

Let (p, g) € A witness g = g[G NPy] € B.

There is p € G forcing that g and ¢° are compatible, with common

extension §. Wlog p < p, p’. Then (. ) < (. ). (p°, ¢°). O

Corollary (embeddability of Suslin ccc forcing)

Let Pg<o IP; be p.o.’s.
Assume Q is a Suslin ccc forcing coded in Vo
Then Py QY <o P; x QY™
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Check: B is a maximal antichain in Qg in V[G N P]!

By assumption, B maximal in Q1 in V[G].

Hence there is g € B compatible with ¢°[G].

Let (p, g) € A witness g = g[G NPy] € B.

There is p € G forcing that g and ¢° are compatible, with common

extension §. Wlog p < p, p’. Then (. ) < (. ). (p°, ¢°). O

Corollary (embeddability of Suslin ccc forcing)

Let Pg<o IP; be p.o.’s.
Assume Q is a Suslin ccc forcing coded in Vo
Then Py QY <o P; x QY™

Proof: Immediate by previous lemma and absoluteness of maximal
antichains of Suslin ccc forcing. O
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Let § be an ordinal. Let Q,, o« < §, be Suslin ccc, all coded in V.
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Finite support iteration

Let § be an ordinal. Let Q,, o« < §, be Suslin ccc, all coded in V.

One can recursively define the finite support iteration (fsi)

(Py : o < 0) with iterands Q in the usual way, letting P41 be
the two-step iteration of P, and @C\fﬂ»a (the reinterpretation of Q,
in the P,-generic extension).
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Finite support iteration

Let § be an ordinal. Let Q,, o« < §, be Suslin ccc, all coded in V.

One can recursively define the finite support iteration (fsi)

(Py : o < 0) with iterands Q in the usual way, letting P41 be
the two-step iteration of P, and QC\I/% (the reinterpretation of Q,
in the P,-generic extension).

We will also look at fragments of this iteration.

By the absoluteness properties described above, all these fragments
will completely embed into the whole iteration in a canonical way.
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Fix X C 4.

By recursion on o < 4, define the p.o. Pxnq:
® Pxno = {1}
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Fix X C 4.

By recursion on o < 4, define the p.o. Pxnq:
® Pxno = {1}

]PX Lot
° IF>XI"I(04—|—1) = { "

ifad¢ X
Pxra * QY™ ifae X
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Fix X C 4.

By recursion on o < 4, define the p.o. Pxnq:
® Pxno = {1}

]PX Lot
° IF)XI"I(oH—l) = { "

ifad¢ X
Pxra * QY™ ifae X
@ For limit v, Pxq, = limdirq<,Pxna
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Fix X C 6.

By recursion on a < §, define the p.o. Pxnq:
] ]PXI"IO = {1}

o P _ IP)Xﬁoz e
XN(a+1) ]P)Xﬂa*Qx XNa ifae X

ifag¢ X
@ For limit v, Pxny = limdirg<yPxna
mentioned above.

Clearly, for X = ¢ one obtains the standard fsi (P, : o < 9)
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Assume X C Y C§. Then Px<o Py. I
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Assume X C Y C§. Then Px<o Py. I
Proof: Prove by induction on o < ¢ that Pxnn<0 Pynq.
Basic step: trivial.
«4O0)>» «Fr «Er» «E)» = Q>
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Assume X C Y C§. Then Px<o Py.

Proof: Prove by induction on o < ¢ that Pxnn<0 Pynq.

Basic step: trivial.

Successor step: let § = a + 1.
If a & X,

Pxng = Pxna<o Pyna<o Pynp
by definition and induction hypothesis.
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So assume a € X. Recall:
Let Pg<o IP; be p.o.’s.

Assume Q is a Suslin ccc forcing coded in Vo
Then Pox QY <o P; x Q™.

V]PX Na
«

By induction hypothesis and embeddability of Suslin ccc forcing,
Pxns = Pxna * Q

<o ]P)Yma * Q

V]PYﬂa o
a  =Pyng
«O>» «Fr «=)r «E)» = Q>




Suslin ccc forcing,

Pxns = Pxna * Q

V]PX Na
«

So assume o € X. By induction hypothesis and embeddability of

<o ]P)Yma * Q
Limit step: exercise! [J

V]PYﬂa
o

=Pyngs
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Let o < 6.

(i) Let p € P,.
Then there is X C « countable such that p € Px.
(ii) Let f be a P,-name for a real.

Then there is X C « countable such that fisa Px-name for

a real.
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Let o < 6.

(i) Let p € P,.
Then there is X C « countable such that p € Px.
(ii) Let f be a P,-name for a real.

Then there is X C « countable such that fisa Px-name for
a real.

Proof: Simultaneous induction on o < 4.

Basic step: trivial.
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Successor step: let = a+1.

(i) Let (pa q) EPy*xQq = Pﬁ-

By induction hypothesis for (i) and (ii): there are countable Xp
and Xi such that p € Px, and g is a Px;-name.

Let X = XpU X1 U {a} Then (p, q) € Px.
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Localization 2

Successor step: let f=a + 1.

(i) Let (p, q) € Po x Qo = Pg.

By induction hypothesis for (i) and (ii): there are countable Xp
and Xi such that p € Px, and g is a Px;-name.

Let X = Xo U X1 U{a}. Then (p, q) € Px.

(ii) Let f be a Pg-name for a real.

There a countable maximal antichains {p’ : m € w} C Py and
numbers {k™ : m € w}, such that p™ IF f(n) = k7.

By (i): there are countable X" such that p]’ € Pxm.

Let X =U, n, X

Since f is completely decided by p/" and k], it is Px-name.
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Localization 2

Successor step: let f=a + 1.

(i) Let (p, q) € Po x Qo = Pg.

By induction hypothesis for (i) and (ii): there are countable Xj
and Xi such that p € Px, and g is a Px;-name.

Let X = Xo U X1 U{a}. Then (p, q) € Px.

(ii) Let f be a Pg-name for a real.

There a countable maximal antichains {p’ : m € w} C Py and
numbers {k™ : m € w}, such that p™ IF f(n) = k7.

By (i): there are countable X[ such that p]’ € Pxm.

Let X =U, n, X

Since f is completely decided by p/" and k], it is Px-name.
Limit step: (i) trivial. (ii) follows from (i) as above. OJ

Jorg Brendle Aspects of iterated forcing



Let X C P(6) be a directed family of sets such that for every
countable Y C ¢ there is X € X with Y C X.
Then Ps = limdirxcxPx.
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Let X C P(6) be a directed family of sets such that for every
countable Y C ¢ there is X € X with Y C X.
Then Ps = limdirxcxPx.

Proof:

By embeddability of fragments, the direct limit is a subset of Ps.
By localization, then, the two sets are actually equal. (I
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Let X C P(6) be a directed family of sets such that for every
countable Y C ¢ there is X € X with Y C X.
Then Ps = limdirxcxPx.

Proof:

By embeddability of fragments, the direct limit is a subset of Ps.
By localization, then, the two sets are actually equal. (I

Ps = limdir{Px : X C § is countable}. '
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Direct limit 1

Corollary (representation as direct limit)

Let X C P(6) be a directed family of sets such that for every
countable Y C § there is X € X with Y C X.
Then ]P)(; = lim diI‘XE)(]P)X,

Proof:
By embeddability of fragments, the direct limit is a subset of Ps.
By localization, then, the two sets are actually equal. (I

Corollary
Ps = limdir{Px : X C § is countable}.

v

What can we say about the direct limit of finite fragments of
Suslin ccc iterations? E.g., for Hechler forcing.
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Consider P+ Ps.

Assume P is Suslin ccc, and Ps is an iteration of Suslin ccc forcing.
No new real of V¥ \ V belongs to Vs (in Vs ).
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Assume P is Suslin ccc, and Ps is an iteration of Suslin ccc forcing.
Consider P x Ps.

No new real of VE\ V belongs to V¥s (in VPPs ).

Warning: This is not true for iterations of forcing notions in
general. For example, if sy is Sacks generic over V, and s; is Sacks
generic over V[sp], then sp € V[s1].
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Direct limit 2

Lemma

Assume P is S_us//'n ccc, and P is an iteration of Suslin ccc forcing.
Consider P x Ps. _
No new real of V¥ \ V belongs to V¥s (in V¥*¥s ),

Corollary (representation as wi-stage direct limit)

Let § be uncountable. Let X,, o < ws, be a strictly increasing
sequence of subsets of § with § =, Xa.
Then Ps = limdir,Px,. Furthermore,

(i) w NV =, (w* N VExa)
(i) w? N (V%1 \ VBxa) £ () for a < w;
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Direct limit 2

Lemma

Assume P is S_us//'n ccc, and P is an iteration of Suslin ccc forcing.
Consider P x Ps. _
No new real of V¥ \ V belongs to V¥s (in V¥*¥s ),

Corollary (representation as wi-stage direct limit)

Let § be uncountable. Let X,, o < ws, be a strictly increasing
sequence of subsets of § with § =, Xa.
Then Ps = limdir,Px,. Furthermore,
(i) w*n VB =, (v N VExa)
(i) w N (VE%1 \ VEXa) £ 0 for a < wy
Proof: first part: representation as direct limit.

second part: (i) localization.  (ii) apply lemma above. [J
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For our applications, we need some of the basic
cardinal invariants of the continuum.
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Suslin ccc forcing
Iteration of definable forcing
Applications

Cardinal invariants of the continuum 1

For our applications, we need some of the basic
cardinal invariants of the continuum.

For f,g € w":

f<*g (g eventually dominates f)
<= f(n) < g(n) for all but finitely many n
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Cardinal invariants of the continuum 1

For our applications, we need some of the basic
cardinal invariants of the continuum.

For f,g € w":
f<*g (g eventually dominates f)

<= f(n) < g(n) for all but finitely many n

b := min{|F| : F is unbounded in (w*, <*)},
the bounding number.
0 := min{|F| : F is cofinal in (w*, <*)}, the dominating number.
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For A, B C w:

AC* B (Ais almost contained in B) <= A\ B is finite
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For A, B C w:

AC* B (Ais almost contained in B) <= A\ B is finite
For A, B € [w]*:
A splits B <= |ANB| = |B\ Al =Xy
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For A, B C w:
AC* B (Ais almost contained in B) <= A\ B is finite
For A, B € [w]*:
A splits B <= |[AN B| = |B\ A| = Rg
F C [w]¥ is splitting if every member of [w]“ is split by a member
of F.

F C [w]® is unsplit (or unreaped) if no member of [w]“ splits all
members of F. l.e. VA € [w]¥ 3B € F (|JAN B| < Rg or B C* A)
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Applications

For A, B C w:
AC* B (Ais almost contained in B) <= A\ B is finite
For A, B € [w]*:
A splits B <= |AN B| = |B\ Al = X

F C [w]¥ is splitting if every member of [w]“ is split by a member
of F.

F C [w]® is unsplit (or unreaped) if no member of [w]“ splits all
members of F.

s := min{|F| : F is splitting}, the splitting number.
t:=min{|F| : F is unsplit}, the reaping number.
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D C [w]“ dense: YA € [w]* 3B € D (B C* A)
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D C [w]¥ dense: VA € [w]* IBeD (BC* A)
D C [w]¥ open: VAe D VB C* A (Be D)
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Cardinal invariants of the continuum 3

D C [w]¥ dense: VA€ [w]* dIBeD (BC* A)
D C [w]¥ open: VAe D VBC* A (BeD)

A family D C [w] is groupwise dense if
@ D is open

@ given a partition (I, : n € w) of w into intervals, there is
B € [w]® such that | J,.glh € D
(this implies, in particular, that D is dense)
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D C [w]¥ dense: VA€ [w]* dIBeD (BC* A)
D C [w]¥ open: VAe D VBC* A (BeD)

A family D C [w] is groupwise dense if
@ D is open
@ given a partition (I, : n € w) of w into intervals, there is
B € [w]® such that | J,.glh € D
(this implies, in particular, that D is dense)
b :=min{|D|: all D € D open dense and (D = 0}
the distributivity number.
g := min{|D] : all D € D groupwise dense and D = 0}
the groupwise density number.
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7 ideal on the reals.

add(Z) := min{|F|: F C T and |JF ¢ I}, the additivity of Z.

cof(Z) := min{|F| : F C T is a basis}, the cofinality of Z.

Basis: F C I such every member of 7 is contained in some
member of F.
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Cardinal invariants of the continuum 4

7 ideal on the reals.

add(Z) := min{|F|: F C T and |JF ¢ I}, the additivity of 7.
cof (Z) := min{|F| : F C T is a basis}, the cofinality of .

Basis: F C T such every member of 7 is contained in some
member of F.

Theorem
(i) b <min{b,s,g} and g <?
(i) b<d
(iii) b <t and duallys <o
(iv) add(N') < b and dually ® < cof (N') for the null ideal N
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forcing.

Then, in the Py-extension, g = Ny.

«Or «Fr «=Zr « =) = Q>

Let A\ be regular uncountable. Let Py be an fsi of Suslin ccc




Theorem
Let A\ be regular uncountable. Let Py be an fsi of Suslin ccc
forcing.
Then, in the Py-extension, g = Ny.
Corollary
Let Dy be the fsi of Hechler forcing .
In the Dy-extension, b =0 = A\ while g = N;.
In particular, g < b is consistent.
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First application: b versus g 1

Theorem

Let \ be regular uncountable. Let Py be an fsi of Suslin ccc
forcing.

Then, in the Py-extension, g = Nj.

Corollary

Let Dy be the fsi of Hechler forcing .

In the Dy-extension, b = 0 = A\ while g = N;.
In particular, g < b is consistent.

Proof: b =0 = X\ because we add a A-scale
(a well-ordered dominating family of size ).
g = Ny follows from Theorem. [
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First application: b versus g 1

Theorem

Let \ be regular uncountable. Let Py be an fsi of Suslin ccc
forcing.
Then, in the Py-extension, g = Nj.

Corollary

Let Dy be the fsi of Hechler forcing .
In the Dy-extension, b =0 = \ while g = Nj.
In particular, g < b is consistent.

Corollary

Let Ay be the fsi of amoeba forcing A.
In the Ay-extension, add(N') = cof(N) = X while g = Ny.
In particular, g < add(N) is consistent.
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First application: b versus g 2

Theorem follows from:

Corollary (representation as ws-stage direct limit)

Let § be uncountable. Let X,, a < wy be a strictly increasing
sequence of subsets of § with § =, Xa.
Then Ps = limdir,Px,. Furthermore,

() w NV =, (w* N VExa)

(i) w N (VE%1 \ VEXa) £ 0 for o < wy

and the following lemma:
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Lemma
Let k be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models V,,, o < k, such that
(i) NV =Upenu(wNVy)
(i) w* N (Vat1 \ Vo) # 0 for all a < k.
Then g < k.
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First application: b versus g 3

Lemma

Let k be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models V,,, o < k, such that

(i) wNV =y nVy)

(i) w’ N (Vat1 \ Vo) # 0 for all a < k.
Then g < k.
Proof: Let

D, = {X € [w]” : X has no almost subset in V,}

(i): intersection of D, is empty.
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First application: b versus g 3

Lemma

Let k be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models V,,, o < k, such that

(i) wNV =y nVy)
(i) w’ N (Vat1 \ Vo) # 0 for all a < k.
Then g < k.

Proof: Let

D, = {X € [w]” : X has no almost subset in V,}

(i): intersection of D, is empty.
Check the D, are groupwise dense.
Obviously, they are open.
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Let Z = (I, : n € w) be a partition of w into intervals.
(i): thereis 8 > « such that 7 € V3.
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First application: b versus g 4

Let Z = (I, : n € w) be a partition of w into intervals.

(i): there is 3 > o such that 7 € Vj.

Let A € Vg be a mad family which contains a perfect a.d. family
B.

(ii): B has new branch Ain V3.

A almost disjoint from A. Let C = J,c4 In-

Claim: C € Dg and thus C € D, as well.
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Let Z = (I, : n € w) be a partition of w into intervals.

(i): there is 3 > o such that 7 € Vj.

Let A € Vg be a mad family which contains a perfect a.d. family
B.

(ii): B has new branch Ain V3.

A almost disjoint from A. Let C = J,c4 In-

Claim: C € Dg and thus C € D, as well.

Suppose C has an almost subset D € V.

Let E={n:1,NnD # 0}.

Clearly E C* A so that E is almost disjoint from A.

On the other hand, E belongs to V3 because both D and 7 do.
This contradicts the maximality of A. [J
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forcing.

Py -extension.

Let A\ be regular uncountable. Let Py be an fsi of Suslin ccc

Then the ground model reals form a splitting family in the
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forcing.

Py -extension.

Let A\ be regular uncountable. Let Py be an fsi of Suslin ccc

Then the ground model reals form a splitting family in the

s < b is consistent. Even add(N') < b is consistent. I
«O» «Fr « =)
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Second application: b versus s

Theorem (Judah-Shelah)

Let X be regular uncountable. Let Py be an fsi of Suslin ccc
forcing.

Then the ground model reals form a splitting family in the
P -extension.

Corollary (Judah-Shelah)

s < b is consistent. Even add(N') < b is consistent.

Proof: Use again iteration of D (Hechler) or A (amoeba). O
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Second application: b versus s

Theorem (Judah-Shelah)

Let X be regular uncountable. Let Py be an fsi of Suslin ccc
forcing.

Then the ground model reals form a splitting family in the
P -extension.

Corollary (Judah-Shelah)

s < b is consistent. Even add(N') < b is consistent.

Proof: Use again iteration of D (Hechler) or A (amoeba). O

Remark: CON(s < b) was first shown by Baumgartner-Dordal
using the same model but a different argument.
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the non-definable context.

We investigate the problem to which extent the embeddability

results and iteration techniques of lecture 1 can be generalized to
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Extending ultrafilters
Matrix iterations
Applications

We investigate the problem to which extent the embeddability
results and iteration techniques of lecture 1 can be generalized to
the non-definable context.

Since absoluteness of maximal antichains usually fails badly for
non-ccc p.o.'s, we stay in the realm of ccc forcing.

Relatively simple non-definable ccc forcing notions can be
associated naturally with ultrafilters on w.

Jorg Brendle Aspects of iterated forcing



Let F be a filter on w.

Mathias forcing with F, M r:

maxs < min A

@ Conditions: pairs (s, A) such that s € [w]<¥, A € F, and
@ Order: (t,B) < (s, A)

iftD>s, t\sCA and BCA
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Let F be a filter on w.

Mathias forcing with F, M r:

maxs < min A
@ Order: (t,B) < (s, A)
Properties:

@ Conditions: pairs (s, A) such that s € [w]<¥, A € F, and
@ o-centered

iftD>s, t\sCA and BCA
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Mathias forcing

Let F be a filter on w.
Mathias forcing with F, M r:

@ Conditions: pairs (s, A) such that s € [w]<¥, A€ F, and
maxs < min A

@ Order: (t,B) <(s,A) iftDs, t\sCA and BCA
Properties:
@ o-centered
@ adds a generic Mathias real
m = U{s . there is A € F such that (s, A) € G}
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Mathias forcing

Let F be a filter on w.
Mathias forcing with F, M r:

@ Conditions: pairs (s, A) such that s € [w]<¥, A€ F, and
maxs < min A

@ Order: (t,B) <(s,A) iftDs, t\sCA and BCA
Properties:
@ o-centered

@ adds a generic Mathias real
m = U{s . there is A € F such that (s,A) € G}

@ m is a pseudointersection of the filter F
(mC* Aforall Ac F)
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Laver forcing with F, L r:

o Conditions: trees T C w<“ such that

for all s € T with stem(T) Cs,

succr(s)={n:s"ne T} eF.
@ Order: inclusion

«Or <Fr o« = = aAr



Laver forcing with F, L r:

o Conditions: trees T C w<“ such that
for all s € T with stem(T) Cs,

succr(s)={n:s"ne T} eF.
@ Order: inclusion

Properties:

@ o-centered

«Or 4 Fr «=H» <= = 9Dae



Laver forcing with F, L r:

o Conditions: trees T C w<%“ such that:

for all s € T with stem(T) Cs,

succr(s)={n:sne T} e F.
@ Order: inclusion

Properties:
@ o-centered

@ adds a generic Laver real

0= J{stem(T): T € G}
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Laver forcing with F, L r:

o Conditions: trees T C w<“ such that
for all s € T with stem(T) Cs,

succr(s)={n:s"ne T} eF.
@ Order: inclusion

Properties:
@ o-centered
@ adds a generic Laver real

@ / is a dominating real

0= J{stem(T): T € G}
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Laver forcing with F, L r:

o Conditions: trees T C w<“ such that
for all s € T with stem(T) Cs,

succr(s)={n:s"ne T} eF.
@ Order: inclusion

Properties:
@ o-centered
@ adds a generic Laver real

@ / is a dominating real

0= J{stem(T): T € G}

@ ran(/) is a pseudointersection of F
«O>» «Fr «E>» = = 9Dae



extending F.

Assume we have models M C N, and filters F € Mand G e N
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Assume we have models M C N, and filters F € Mand G e N
extending F.

Under which circumstances is every maximal antichain A C Mg in
M still a maximal antichain of Mg is N7 What about L and Lg?
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Absoluteness for Mathias or Laver forcing?

Assume we have models M C N, and filters F € Mand G € N
extending F.

Under which circumstances is every maximal antichain A C M in
M still a maximal antichain of Mg is N7 What about Lz and Lg?
This is trivially true if G = F, but the situation we are interested in

is when G properly extends F.

The answer is easier for Laver forcing:
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The following are equivalent:

(i) every maximal antichain of Lr in M is still a maximal
antichain of Lg in N

«O> «F>» «=)r» «=)>» = Q>

(i) every F-positive set in M is still G-positive in N




The following are equivalent:

(i) every F-positive set in M is still G-positive in N
antichain of Lg in N

Proof: Backwards direction: easy!

«O> «F>» «=)r» «=)>» = Q>

(i) every maximal antichain of Lr in M is still a maximal
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Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)
The following are equivalent:
(i) every F-positive set in M is still G-positive in N
(ii) every maximal antichain of Lz in M is still a maximal
antichain of Lg in N

Proof: Backwards direction: easy!
Assume X € M is F-positive, but w \ X € G. Then:

D={T e€Lg:stem(T)(|stem(T)| —1) € X}

dense in L.
Yet: S = (w\ X)<¥ € Lg is incompatible with every element of D.
Thus no maximal antichain A C D of M survives.
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Forwards direction: rank argument!
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Forwards direction: rank argument!

Let A € M be a maximal antichain in L. By recursion on

a < wi, define in M when rank(s) = « for s € w<¥.

@ rank(s) =0 if 3T € A such that stem(T)Cse T.
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Forwards direction: rank argument!

Let A € M be a maximal antichain in L. By recursion on
a < wi, define in M when rank(s) = « for s € w<¥.
@ rank(s) = «a if

@ rank(s) =0 if 3T € A such that stem(T)Cse T.
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Forwards direction: rank argument!

Let A € M be a maximal antichain in L. By recursion on

a < wi, define in M when rank(s) = « for s € w<¥.
@ rank(s) = «a if

@ rank(s) =0 if 3T € A such that stem(T)Cse T.

@ there is no § < « with rank(s) = 3, and

«O> «F>» «=)r» «=)>» = Q>



Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A€ M be a maximal antichain in Lz. By recursion on
a < wi, define in M when rank(s) = a for s € w<¥.
@ rank(s) =0 if 3T € A such that stem(7T)Cse T.
o rank(s) = « if
@ there is no § < a with rank(s) = 3, and
o {n:rank(s"n) < a} is F-positive.
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A € M be a maximal antichain in Lz. By recursion on
« < wy, define in M when rank(s) = « for s € w<¥.
@ rank(s) =0 if 3T € A such that stem(7T)Cse T.
o rank(s) = « if
@ there is no 3 < a with rank(s) = 3, and
o {n:rank(s"n) < a} is F-positive.
Claim: for every s € w<%, rank(s) defined (thus < wy).
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Extending ultrafilters
Matrix iterations
Applications

Forwards direction: rank argument!
Let A € M be a maximal antichain in Lz. By recursion on
« < wy, define in M when rank(s) = « for s € w<¥.
@ rank(s) =0 if 3T € A such that stem(7T)Cse T.
o rank(s) = « if
@ there is no 3 < a with rank(s) = 3, and
o {n:rank(s"n) < a} is F-positive.
Claim: for every s € w<%, rank(s) defined (thus < wy).
Suppose rank(s) undefined for some s.
Then {n: rank(s"n) is undefined} € F.
Recursively build tree S € Lz such that stem(S) = s and for all
t Dsin S, rank(t) is undefined.
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Extending ultrafilters
Matrix iterations
Applications

Forwards direction: rank argument!
Let A € M be a maximal antichain in Lz. By recursion on
« < wy, define in M when rank(s) = « for s € w<¥.
@ rank(s) =0 if 3T € A such that stem(7T)Cse T.
o rank(s) = « if
@ there is no 3 < a with rank(s) = 3, and
o {n:rank(s"n) < a} is F-positive.
Claim: for every s € w<%, rank(s) defined (thus < wy).
Suppose rank(s) undefined for some s.
Then {n: rank(s"n) is undefined} € F.
Recursively build tree S € Lz such that stem(S) = s and for all
t Dsin S, rank(t) is undefined.
Let T € A be compatible with S with common extension U.
Then: stem(T) C stem(U) € U C T so that rank(stem(U)) = 0.
Also: stem(S) C stem(U) € U C S so that rank(stem(U)) undef.
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Let S € N be a condition in Lg. Put s = stem(S).
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Let S € N be a condition in Lg. Put s = stem(S).

By induction on rank(s), show there is T € A compatible with S.
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Let S € N be a condition in Lg. Put s = stem(S).

By induction on rank(s), show there is T € A compatible with S

@ rank(s) = 0: thereis T € A such that stem(T)Cse T.
Compatibility: straightforward.
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Extending ultrafilters
Matrix iterations
Applications

Let S € N be a condition in Lg. Put s = stem(S).
By induction on rank(s), show there is T € A compatible with S.

@ rank(s) = 0: there is T € A such that stem(T) Cse T.
Compatibility: straightforward.

@ rank(s) > 0: Consider {n : rank(s"n) < rank(s)}.
This set is F-positive and, by assumption, still G-positive.
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Absoluteness for Laver forcing 3

Extending ultrafilters
Matrix iterations
Applications

Let S € N be a condition in Lg. Put s = stem(S).
By induction on rank(s), show there is T € A compatible with S.

@ rank(s) = 0: there is T € A such that stem(T) Cse T.
Compatibility: straightforward.

@ rank(s) > 0: Consider {n : rank(s"n) < rank(s)}.
This set is F-positive and, by assumption, still G-positive.
Hence there is n € succs(s) with rank(s"n) < rank(s).
Consider 5¢y ={t€ S:tCsors'nC t}
This is a subtree of S with stem s™n.
By induction hypothesis, there is T € A compatible with Ss~,.
But then T is also compatible with S. [J
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Let U be an ultrafilter in M and let V be an ultrafilter in N
maximal antichain of Ly, in N.

extending U. Then every maximal antichain of y; in M is still a
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Lecture 1: Definability

Lecture 2: Matrices Extending ultrafilters
Matrix iterations
Lecture 3: Ultrapowers R
Applications

Lecture 4: Witnesses

Absoluteness for Laver and Mathias forcing

Corollary (Shelah)

Let U be an ultrafilter in M and let V be an ultrafilter in N

extending U. Then every maximal antichain of Ly, in M is still a
maximal antichain of Ly, in N.

Even this special case fails for Mathias forcing:

Assume U € M is not Ramsey, and assume there is a Cohen real in
N over M. Then there are an ultrafilter V 2 ¢/ in N and a
maximal antichain A C My, in M which is not maximal in M,.

o & E E =
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On the other hand, given an arbitrary U, we can always find V
such that maximal antichains are preserved:
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Absoluteness for Mathias forcing

Extending ultrafilters
Matrix iterations
Applications

On the other hand, given an arbitrary U, we can always find V
such that maximal antichains are preserved:
Lemma (Blass-Shelah)

Let U be an ultrafilter in M.

Also assume there is ¢ € w* N N unbounded over M.
Then there is an ultrafilter V O U in N such that:

(i) every maximal antichain of My, in M is still a maximal
antichain of My, in N

(i) c is unbounded over MMu jn NMv.
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Using these absoluteness results

@ we obtain complete embeddability

@ we build long iterations which can be realized as direct limits
of “short iterations”

as in lecture 1.
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Applications

Complete embeddability

Using these absoluteness results
@ we obtain complete embeddability
@ we build long iterations which can be realized as direct limits
of “short iterations”
as in lecture 1. Recall from lecture 1:

Lemma (preservation of embeddability in iterations)

Let Po<o IP1 be p.o.’s. Let Q; be P;-names for p.o.’s such that
Py IF @0 - Ql and all maximal antichains of(@o in Vo are
maximal antichains of Q1 in VF1.

Then Py Q0<O Py x Ql.

In our context, this means:

Jorg Brendle Aspects of iterated forcing
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Extending ultrafilters
Matrix iterations
Applications

Complete embeddability

Using these absoluteness results
@ we obtain complete embeddability

@ we build long iterations which can be realized as direct limits
of “short iterations”

as in lecture 1.
Lemma (preservation of embeddability in iterations)

Let Po<o Py be p.o.’s. Let Fi be Pj-names for filters such that
Py IF .7-"0 C .7-"1 and all maximal antichains ofX]_- in VPo are

maximal antichains ofX]_- in VP1 where X = L, M.
Then ]P’O*X L <O ]P’l*X
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Let i < A be uncountable regular cardinals.
Assume (P§ : v < p) is a ccc iteration such that
Py = limdiry<,P].
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Lecture 4: Witnesses

Matrices: the first step 1

Extending ultrafilters
Matrix iterations
Applications

Let ;+ < A be uncountable regular cardinals.
Assume (P§ : v < ) is a ccc iteration such that

ISP Y
Py = limdir, <, Py.

By recursion on 7 choose Pj-names for filters F{ such that
§ [ )
o Py IFFJ CFfory<é
@ all maximal antichains of X 1+ in VS are maximal antichains
0

of Xf'g in VP where X = L,M
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Matrices: the first step 1

Extending ultrafilters
Matrix iterations
Applications

Let ;+ < A be uncountable regular cardinals.
Assume (P§ : v < ) is a ccc iteration such that
Py = limdiry<,P].

By recursion on 7 choose Pj-names for filters F{ such that
° Pgll—fggfg for y < d
@ all maximal antichains of X 1+ in VP are maximal antichains
0
of X5 in VP where X = L,M
0
Y _ Y _
Then let P =P *Xf?'
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Properties:

VES for v<6

(by preservation of maximal antichains)
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Properties:

o if xis X]-_-és—generic over V3, then it is also Xj_-g—generic over
VES for v<6

(by preservation of maximal antichains)
o P]<o P for y <6

(by preservation of embeddability)
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Properties:

o if xis X]-_-és—generic over V3, then it is also Xj_-g—generic over
VES for v<6

(by preservation of maximal antichains)
o P]<o P for y <6

(by preservation of embeddability)
o P} = limdiry<,P]
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Properties:

o if xis X]-_-és—generic over V3, then it is also Xj_-g—generic over
VES for v<6
(by preservation of maximal antichains)
o P]<o P for y <6
(by preservation of embeddability)
o P} = limdiry<,P]
o Vi'nuwY=J

g w
<u Vinw
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Matrices: the first step 2

Extending ultrafilters
Matrix iterations
Applications

Properties:
o if xis ng—generic over VES, then it is also Xfow—generic over
VES for v < &
(by preservation of maximal antichains)
o P]<o P for y <
(by preservation of embeddability)
o P/ =limdiry<,P]
o Vnuww = U<, VY nwv
In particular, (P] : v < ) is a ccc iteration such that
P} = lim diry<,P].
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More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) Pl<o P for v < §
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(i) Po = limdiry<, P}

«Or 4 Fr «=H» <= = 9Dae

More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) Pl<o P for v < §



(i) Po = limdiry<, P}
(i) V& Nwe =

vy w
<n Vo Nw

«Or «Fr «=>» = = aAr

More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) Pl<o P for v < §



More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) Pl<o P for v < §

(i) Po = limdiry<, P}
(i) V& Aw? =, Vd Nw*

(iv) if 8= a+1is a successor, we have Pj-names for filters Fo
such that
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More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) Pl<o P for v < §

(i) Po = limdiry<, P}
(i) V& Aw? =, Vd Nw*

(iv) if 8= a+1is a successor, we have Pj-names for filters Fo
such that

o P IFFYCFfory<d
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Lecture 3: Ultrapowers
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Extending ultrafilters
Matrix iterations
Applications

Matrices: the general case

More generally, by recursion on o < A, build finite support
iterations (P : « < \), v < p, such that

(i) IP’7<o P for y < §

(ii) P

(iii) V”ﬂw =U,, Va Nw®
)

(iv) if 3= a +1is a successor, we have P}-names for filters F
such that
o PO I F1 C FS fory < 6 i
o all maximal antichains of X in VFa are maximal antichains
of X5 in VFa where X = L, M

— lim dir, <, P}

Jorg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
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Extending ultrafilters
Matrix iterations
Applications

Matrices: the general case

More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) PL<o P for v < §
(i) P4 = limdiry<,PJ
(i) Vi nw* =U,_, Va Nw”
(iv) if 3= o+ 1is a successor, we have PJ-names for filters F
such that

o PO I-FYCFofory<d
o all maximal antichains of Xz in VFS are maximal antichains

of X in VP where X = L,M

Y<p

and we put P = P x X

Jorg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Matrices: the general case

More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) IPW<O P fory < §
(i) P
(iii) V“ﬂw =U, <, Va Nw®
(iv) if 3= o+ 1is a successor, we have PJ-names for filters F
such that

o PO I-FYCFofory<d
o all maximal antichains of Xz in VFS are maximal antichains

of X in VP where X = L,M
and we put P = P x X
Successor step § = a + 1: like = 1 of previous slide.

— lim dir, <, P}
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Matrices: the general case

More generally, by recursion on o < A, build finite support
iterations (P} : @ < \), v < p, such that
(i) PR<o P for v <&
(i) PX = lim dir,, P}
(i) Vi nw* =U,_, Va Nw”
(iv) if 3=+ 1is a successor, we have P}-names for filters 7
such that

o PO I FY CFS fory <6
o all maximal antichains of Xf-; in VFa are maximal antichains
of X in VP where X = L,M
and we put P, = P4 » X 1

Y<p

Successor step § = a + 1: like = 1 of previous slide.
Limit step: (i), (ii), (iii): exercise!
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Let Q denote the rationals.

Dense(Q): dense subsets of rationals.

nwd: nowhere dense sets of rationals
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Let Q denote the rationals.
Dense(Q): dense subsets of rationals.
nwd: nowhere dense sets of rationals

For A, B € Dense(Q):

A Cuwa B (A'is contained in B mod nwd) <= A\ B € nwd
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Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Dense sets of rationals

Let Q denote the rationals.
Dense(Q): dense subsets of rationals.
nwd: nowhere dense sets of rationals

For A, B € Dense(Q):

A Cuwa B (A'is contained in B mod nwd) <= A\ B € nwd

Consider the quotient Dense(Q)/nwd ordered by
[A] < [B] iff A Cpwa B.
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For A, B € Dense(Q):

A Q-splits B <= AN B and B\ A both dense
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

Cardinal invariants for Dense(Q)/nwd 1

Extending ultrafilters
Matrix iterations
Applications

For A, B € Dense(Q):
A Q-splits B <= AN B and B\ A both dense

F C Dense(Q) is Q-splitting if every member of Dense(Q) is
Q-split by a member of F.

F C Dense(Q) is Q-unsplit (or Q-unreaped) if no member of
Dense(Q) Q-splits all members of F, i.e.

VA € Dense(Q) 3B € F (AN B not dense or B\ A not dense).
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Extending ultrafilters
Matrix iterations
Applications

Cardinal invariants for Dense(Q)/nwd 1

For A, B € Dense(Q):
A Q-splits B <= AN B and B\ A both dense

F C Dense(Q) is Q-splitting if every member of Dense(Q) is
Q-split by a member of F.

F C Dense(Q) is Q-unsplit (or Q-unreaped) if no member of
Dense(Q) Q-splits all members of F, i.e.

VA € Dense(Q) 3B € F (AN B not dense or B\ A not dense).

sq := min{|F| : F is Q-splitting}, the Q-splitting number.
tq := min{|F| : F is Q-unsplit}, the Q-reaping number.
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D C Dense(Q) Q-dense: VA € Dense(Q) 3B €D (B Cpwa A)
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D C Dense(Q) Q-dense: VA € Dense(Q) 3B € D (B Cuwa A)

hq := min{|D| : all D € D open Q-dense and (D = 0}

the Q-distributivity number.
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Lecture 4: Witnesses

Cardinal invariants for Dense(Q)/nwd 2

Extending ultrafilters
Matrix iterations
Applications

D C Dense(Q) Q-dense: VA € Dense(Q) 3B € D (B Cuwa A)
hq := min{|D| : all D € D open Q-dense and (D = 0}

the Q-distributivity number.
Let M be the meager ideal.

Theorem
(i) sq < min{s,add(M)} < min{s, b} and dually
max{t, 0} < max{r, cof(M)} < rq

(i) hq < sq
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s5Q =¢= A\ and hq = N;.

Let A\ = A\ be regular uncountable. It is consistent that
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s5Q =¢= A\ and hq = N;.

Let A\ = A\ be regular uncountable. It is consistent that

Proof: 7 C Dense(Q) is a maximal Q-filter if F is a filter in
Dense(Q).

Dense(Q) which cannot be extended to a strictly larger filter in
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First application: hq versus sq 1

Theorem (B.)

Let A = A\ be regular uncountable. It is consistent that
sQq =c¢= A\ and hg = N;.

Proof: 7 C Dense(Q) is a maximal Q-filter if F is a filter in
Dense(Q) which cannot be extended to a strictly larger filter in
Dense(Q).

Fact: If N C M, F is a maximal Q-filter in M and G is a maximal

Q-filter in N extending F, then every F-positive set of M is
G-positive in N.
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First application: hq versus sq 2

Extending ultrafilters
Matrix iterations
Applications

So we may apply preservation of maximal antichains for Laver
forcing.
Lemma (preservation of maximal antichains)
The following are equivalent:
(i) every F-positive set in M is still G-positive in N
(ii) every maximal antichain of Lx in M is still a maximal
antichain of Lg in N
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So we may apply preservation of maximal antichains for Laver

forcing.  This allows us to build a matrix iteration with 1 = Ny,
X = L and the F, being maximal Q-filters:
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So we may apply preservation of maximal antichains for Laver
forcing.  This allows us to build a matrix iteration with 1 = Ny,
X = L and the F, being maximal Q-filters:
(i) P§ = C7 adds v Cohen reals
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(i) P§ = C7 adds v Cohen reals

So we may apply preservation of maximal antichains for Laver
(i) Pi<o P for v < §

forcing.  This allows us to build a matrix iteration with 1 = Ny,
X = L and the F, being maximal Q-filters:
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(i) P§ = C” adds v Cohen reals

So we may apply preservation of maximal antichains for Laver
(i) Pi<o P for v < §

forcing.  This allows us to build a matrix iteration with 1 = Ny,
X = L and the F, being maximal Q-filters:

(iii) PXt = lim dir, <y, P2
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Extending ultrafilters
Matrix iterations
Applications

First application: hq versus sq 2

So we may apply preservation of maximal antichains for Laver
forcing.  This allows us to build a matrix iteration with 1 = Ny,
X = L and the FJ being maximal Q-filters:

(i) Pg = C” adds ~ Cohen reals
(i) Ph<o P for v < 6
(iii) P§ = lim dir, <y, P2
(iv) V2N =,y (Vad Nw?)and w* N (VS\ V7)) # 0 for
v <4

T<Rp
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Extending ultrafilters
Matrix iterations
Applications

First application: hq versus sq 2

So we may apply preservation of maximal antichains for Laver
forcing.  This allows us to build a matrix iteration with 1 = Ny,
X =L and the F, being maximal Q-filters:

(i) P§ = C” adds v Cohen reals
(i) Ph<o P for v < 6
(iii) P§ = lim dir, <y, P2
(iv) Var N =, on, (Vd Nw?) and w N (VS \ V) # 0 for
<0

(v) if 3= a+1is a successor, we have P-names for maximal
Q-filters Fo such that
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First application: hq versus sq 2

So we may apply preservation of maximal antichains for Laver
forcing.  This allows us to build a matrix iteration with 1 = Ny,
X =L and the F, being maximal Q-filters:

(i) P§ = C” adds v Cohen reals
(i) Ph<o P for v < 6
(iii) P§ = lim dir, <y, P2
(iv) Var N =, on, (Vd Nw?) and w N (VS \ V) # 0 for
<0

(v) if 3= a+1is a successor, we have P-names for maximal
Q-filters Fo such that
o IFS FY CFSfory<d
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First application: hq versus sq 2

So we may apply preservation of maximal antichains for Laver
forcing.  This allows us to build a matrix iteration with 1 = Ny,
X = L and the FJ being maximal Q-filters:
(i) P§ = C” adds v Cohen reals
(i) Ph<o P for v < 6
(iii) P§ = lim dir, <y, P2
(iv) Var N =, on, (Vd Nw?) and w N (VS \ V) # 0 for
<0
(v) if 3= a+1is a successor, we have P-names for maximal
Q-filters 7, such that
o IFS FY CFSfory<d
¢ all maximal antichains of L+ in VPa are maximal antichains
of Ls in VP
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Extending ultrafilters
Matrix iterations
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First application: hq versus sq 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with g = Ny,
X =L and the F, being maximal Q-filters:
(i) PJ = C adds « Cohen reals
(i) Ph<o P for v < 6
(iii) PRt = lim diry<x, P2
(iv) Var N =, on, (Vd Nw?) and w N (VS \ V) # 0 for
v <0
(v) if B =a+1is a successor, we have P}-names for maximal
Q-filters FJ such that
o I FY CFlfory<é
o all maximal antichains of Lz in VP4 are maximal antichains
of L]-_-g in VPa
and we put ]P’g =P x Ly
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Fact: Let F be a maximal Q-filter.

model dense set.

If £ is Lr-generic over V, ran(¥) is not Q-split by any ground
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Fact: Let F be a maximal Q-filter.

If £ is Lr-generic over V, ran(¥) is not Q-split by any ground
model dense set.

Since we iterate A times, sq = ¢ = A.
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First application: hq versus sq 3

Fact: Let F be a maximal Q-filter.
If ¢ is L r-generic over V/, ran(¢) is not Q-split by any ground
model dense set.

Since we iterate A times, sq = ¢ = A.

Lemma

Let x be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models V,,, o < k, such that

(I) ww N V = Ua<n(ww N Va)
(i) w’ N (Vag1 \ Vo) #0 for all a < k.
Then hq < k.
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Extending ultrafilters
Matrix iterations
Applications

First application: hq versus sq 3

Fact: Let F be a maximal Q-filter.
If ¢ is L r-generic over V/, ran(¢) is not Q-split by any ground
model dense set.

Since we iterate A times, sq = ¢ = A.

Lemma

Let x be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models V,,, o < k, such that

(I) ww N V = Ua<n(ww N Va)

(i) w’ N (Vag1 \ Vo) #0 for all a < k.
Then hq < k.
By (iv): true with x =8y, V = V" and V,, = V.
Hence: ho =N;. O
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and b = Ny.

Let A = X\ be regular uncountable. It is consistent that s = ¢ = A
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Second application: b versus s

Theorem (Blass-Shelah)

Let A = \¥ be regular uncountable. It is consistent that s = ¢ = \
and b = Ny.

Use a matrix iteration with ¢ =Ny, X = M and the Z/{g being
ultrafilters. Recall:
Lemma (Blass-Shelah)

Let U be an ultrafilter in M.
Also assume there is ¢ € w* N N unbounded over M.
Then there is an ultrafilter YV O U in N such that:

(i) every maximal antichain of M, in M is still a maximal
antichain of My, in N

(ii) c is unbounded over MM jn NMv.
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Kx: measurable cardinal

D: k-complete ultrafilter on K
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K. measurable cardinal

D: k-complete ultrafilter on K
Let P be a p.o. and consider the ultrapower
P*/D={[f]: f:k— P}
equivalence class of f.

where [f]={g e P": {a < k: f(a) =g(a)} € D} is the
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k: measurable cardinal
D: k-complete ultrafilter on &
Let P be a p.o. and consider the ultrapower

P*/D ={[f] : f:k — P}

where [f]={g e P": {a <k :f(a)=g(a)} € D} is the
equivalence class of f.
IP*/D is ordered by

[e] <[f]if {a < :g(a) <fla)} €D

Identifying p € IP with the class [f] of the constant function
f(a) = p for all a, we may assume P C P¥/D.
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Let A C P be a maximal antichain.

Then A is maximal in P* /D iff |A|] < k.
In particular, P<o P* /D iff P has the k-cc.
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Let A C P be a maximal antichain.
Then A is maximal in P* /D iff |A|] < k.
In particular, P<o P* /D iff P has the k-cc.

Proof: A: an antichain of P of size at least k.
f: any injection from x into A.
Then: [f] is incompatible with all members of A.
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Complete embeddability

Lemma (Complete embeddability)

Let A C P be a maximal antichain.
Then A is maximal in P* /D iff |A| < k.
In particular, P<o P*/D iff P has the k-cc.

Proof: A: an antichain of P of size at least k.
f: any injection from x into A.
Then: [f] is incompatible with all members of A.

Let A be an antichain of P of size < .

Assume [f] € P®/D is incompatible with all members of A.
For p € A: X, := {a: f(«) and p are incompatible} € D.
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Lemma (Complete embeddability)

Let A C P be a maximal antichain.
Then A is maximal in P* /D iff |A| < k.
In particular, P<o P*/D iff P has the k-cc.

Proof: A: an antichain of P of size at least k.
f: any injection from x into A.
Then: [f] is incompatible with all members of A.

Let A be an antichain of P of size < k.

Assume [f] € P®/D is incompatible with all members of A.
For p € A: X, := {a: f(«) and p are incompatible} € D.
r-completeness: X :=(),c Xp € D.

If a € X: f(«) is incompatible with all p € A. O
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Assume P has the \-cc for some A < k.
Then P /D has the A-cc as well.
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Assume P has the \-cc for some A < k.
Then P* /D has the \-cc as well.

Proof: Assume [£,], v < A, pairwise incompatible in P*/D.
For v,0 < X: Y, 5:={a:f,(a) and f5(a) are incompatible} € D.
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Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume P has the \-cc for some \ < k.
Then P* /D has the A-cc as well.

Proof: Assume [f,], v < A, pairwise incompatible in P*/D.

For v,0 < X: Y, 5:={a:f(«) and f5(a) are incompatible} € D.
r-completeness: Y :=[1 ;Y,s €D.

If o € Y: £,(c), v <A, is an antichain in P.

Contradiction to the A\-cc. [
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Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume P has the \-cc for some \ < k.
Then P* /D has the A-cc as well.

Proof: Assume [f,], v < A, pairwise incompatible in P*/D.

For v,0 < X: Y, 5:={a:f(«) and f5(a) are incompatible} € D.
r-completeness: Y :=[1 ;Y,s €D.

If o € Y: £,(c), v <A, is an antichain in P.

Contradiction to the A\-cc. [

Remark: If P has the k-cc but not the A-cc for any A < k, then
P% /D does not have the k-cc.
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Assume P is ccc.

Since P completely embeds into P*/D, we may write

P*/D =P xQ.

What can we say about the remainder forcing Q?
E.g., what kind of reals can it add?
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Antichains and names for reals 1

Assume P is ccc.
Since P completely embeds into P /D, we may write

P*/D =P« Q.

What can we say about the remainder forcing Q?
E.g., what kind of reals can it add?

Assume {[fy] : n € w} is a maximal antichain in P*/D.

Know: {«: {f;(): n € w} is a maximal antichain} € D.

Thus, by changing the f, on a small set, we may as well assume
that for all «, the f,(«) form a maximal antichain in P.
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such that

A P-name for a real X is represented by sequences of maximal
antichains {p; : n € w} and of numbers {k,; : ncw}, i € w,

Pn,i IFp X(7) = kn,i
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Antichains and names for reals 2

A P-name for a real x is represented by sequences of maximal
antichains {pp; : n € w} and of numbers {k,;: n € w}, i € w,
such that

Pn,i IFp (i) = kn,i
Therefore: a P¥/D-name y for a real is represented by sequences
{lfai] : n€w} and {kn;:ne€w}, i €w, such that the
{fni(a) : n € w}, i € w, form maximal antichains in P for all & and

[fn,i] IFpjp y (i) = kn,i
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Antichains and names for reals 2

A P-name for a real x is represented by sequences of maximal
antichains {pp; : n € w} and of numbers {k,;: n € w}, i € w,
such that

Pn,i IFp (i) = kn,i
Therefore: a P¥/D-name y for a real is represented by sequences
{lfai] : n€w} and {kn;:ne€w}, i €w, such that the
{fni(a) : n € w}, i € w, form maximal antichains in P for all & and

[fn,i] IFpjp y (i) = kn,i
The {fyi(a) : n € w} and {kp;: n € w}, i €w, determine a
P-name y, for a real given by

fn,i(a) H_IP ya(l) = kn,i
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Antichains and names for reals 2

A P-name for a real x is represented by sequences of maximal
antichains {pp; : n € w} and of numbers {k,;: n € w}, i € w,
such that

Pn,i IFp (i) = kn,i
Therefore: a P¥/D-name y for a real is represented by sequences
{lfai] : n€w} and {kn;:ne€w}, i €w, such that the
{fni(a) : n € w}, i € w, form maximal antichains in P for all & and

[fn,i] IFpjp y (i) = kn,i
The {fyi(a) : n € w} and {kp;: n € w}, i €w, determine a
P-name y, for a real given by

f,i() Ibp Yo (i) = kn,i
Think of y as the mean or average of the y, and write

y=0a:a<k)/D.

Jorg Brendle Aspects of iterated forcing



(i) PI- “b =0 =k iffQ adds a dominating real’.

(i) FPIFb >k or PIF0 < K, then P I “Q is w*”-bounding”.
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Put x = (%, : a < K)/D.

(i) fFPIFb >k or PIF0 < K, then P I “Q is w*”-bounding”
Proof: (i) Assume plFp “{x, : @ < Kk} is a scale”.

Clearly p ”‘P*Q X >* x, for all a.

(i) PI- “b =0 =k iffQ adds a dominating real’.
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(i) PI- “b =0 =k iffQ adds a dominating real’.

(i) FPIFb >k or PIF0 < K, then P I “Q is w*”-bounding”.

Proof: (i) Assume plFp “{x, : @ < Kk} is a scale”.
Put x = (%, : a < K)/D.
Clearly p ”‘P*Q X >* x, for all a.

Converse: exercise!
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Lemma (ultrapowers and eventual dominance)
(i) PI- “b =0 = & iff Q adds a dominating real”.
(i) FPIFb >k orPIF0 < &, then P I- “Q is w*-bounding”.

Proof: (i) Assume plFp “{x, : @ < Kk} is a scale”.
Put x = (%, : @ < k)/D.
Clearly p H—P*Q X >* x, for all a.

Converse: exercise!

(ii) Assume that plFp b > k.

Let y = (Vo : @ < k)/D be a P*/D-name for a real.
The y,, are forced to be bounded, say, by x.

But then p H—P*Q y <* x.
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Assume that for some u < k, plFp 0 = pu.

Say: plkp “{X, : @ < p} is dominating”.

Then: plFp “{X, : @ < p} is dominating”. O
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Assume that for some u < k, plFp 0 = pu.

Say: plkp “{X, : @ < p} is dominating”.

Then: plFp “{X, : @ < p} is dominating”. O

w*-bounding.

Give an exact characterization of when Q is forced to be
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Assume that for some u < k, plFp 0 = pu.

Say: plkp “{X, : @ < p} is dominating”.

Then: plFp “{X, : @ < p} is dominating”. O

w*-bounding.

Give an exact characterization of when Q is forced to be

preserved by taking ultrapowers.

Main point: If i > & regular, and P forces b =0 = p, this is
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let u > K regular. Assume P I+ “AV,’y < p, is C*-decreasing
and generates an ultrafilter”. Then P*/D I+ “A,,v < p, still
generates an ultrafilter”.

(i) Assume P |- “A, v < K, satisfy A, Z* As fory < §". Then
P*/D - "Ay,~ < K, does not generate an ultrafilter”.
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Lemma (ultrapowers and ultrafilters)

(i) Let pu > K regular. Assume P I “A,Y,y <, is C*-decreasing
and generates an ultrafilter”. Then P*/D Ik "A,,v < p, still
generates an ultrafilter”.

(i) Assume IPI- “A.,, v < K, satisfy /'47 Z* As for v < 8”. Then
P*/D I+ "Ay,~ < k, does not generate an ultrafilter”.

Proof: (i) B = (B, : a < k)/D: P*/D-name for a subset of w.
By ccc: for each «, find v = 7, such that

Pl “A, C* Byor A, C* w\ By ()
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Lemma (ultrapowers and ultrafilters)

(i) Let pu > K regular. Assume P I “A,Y,y <, is C*-decreasing
and generates an ultrafilter”. Then P*/D Ik "A,,v < p, still
generates an ultrafilter”.

(i) Assume IPI- “A.,, v < K, satisfy /'47 Z* As for v < 8”. Then
P*/D I+ "Ay,~ < k, does not generate an ultrafilter”.

Proof: (i) B = (B, : a < k)/D: P*/D-name for a subset of w.
By ccc: for each «, find v = 7, such that
Pl A, C* By or A, O w\ Ba”. ()
Let v = supaYa- Then (%) holds for all a.. Hence:
P*/DIF “A, C* Bor A, C*w)\ B".
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Lemma (ultrapowers and ultrafilters)

(i) Let pu > K regular. Assume P I “A,Y,y <, is C*-decreasing
and generates an ultrafilter”. Then P*/D Ik "A,,v < p, still
generates an ultrafilter”.

(i) Assume IPI- “A.,, v < K, satisfy /'47 Z* As for v < 8”. Then
P*/D I+ "Ay,~ < k, does not generate an ultrafilter”.
Proof: (i) B = (B, : a < k)/D: P*/D-name for a subset of w.
By ccc: for each «, find v = 7, such that
Pl A, C* By or A C*w\ Ba”. (5)
Let v = supaYa- Then (%) holds for all a.. Hence:
P*/DIF “A, C* Bor A, C*w)\ B".
(ii) Exercise! (Consider A = (A, : a < £)/D.).0
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let pu > K regular. Assume P I “Av,y <, is C*-decreasing
and generates an ultrafilter”. Then P*/D Ik "A,,v < p, still
generates an ultrafilter”.

(i) Assume IPI- “Aw’Y < K, satisfy /'47 Z* As for vy < 8”. Then
P*/D I+ "Ay,~ < k, does not generate an ultrafilter”.

Main points: (i) If 1 > & regular, and P forces an ultrafilter
generated by a decreasing chain of length p, this is preserved by
taking ultrapowers.
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Lemma (ultrapowers and ultrafilters)

(i) Let u > K regular. Assume P I+ “Aw,fy < p, is C*-decreasing
and generates an ultrafilter”. Then P*/D I+ “A,,~v < p, still
generates an ultrafilter”.

(i) AssumePI- “A, v < K, satisfy A, Z* As fory < §". Then
P*/D Ik "Ay,~ < Kk, does not generate an ultrafilter”.

Main points: (i) If 4 > & regular, and PP forces an ultrafilter
generated by a decreasing chain of length p, this is preserved by

taking ultrapowers.
(ii) Taking ultrapowers kills ultrafilter bases of size k.
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Assume P I “A I:S an a.d. family of size > k"
Then P*/D Ik “A is not maximal”.
maximal in VE"/P,

In particular, if P forces a > r, then no a.d. family of V¥ is
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Assume P IF “A I:S an a.d. family of size > k”.
Then P*/D Ik “A is not maximal”.

In particular, if P forces a > r, then no a.d. family of V¥ is
maximal in VE"/P.

Proof: Let > k. Let A= {A 1y < u} be a P-name for an a.d.
family. Consider A = (A, : a < k)/D.
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Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume P I+ “A is an a.d. family of size > k.

Then P*/D IF “A is not maximal’.

In particular, if P forces a > , then no a.d. family of V¥ is
maximal in VE"/P.

Proof: Let pn > k. Let A = {A 17y < u} be a P-name for an a.d.
family. Consider A = (A, : a < k)/D.

Claim: A is forced to be a.d. from all members of A.
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Lemma (ultrapowers and mad families)

Assume P I+ “A is an a.d. family of size > k.

Then P*/D IF “A is not maximal’.

In particular, if P forces a > , then no a.d. family of V¥ is
maximal in VE"/P.

Proof: Let pn > k. Let A = {A7 v < u} be a P-name for an a.d.
family. Consider A = (A, : a < k)/D.

Claim: A is forced to be a.d. from all members of A.

Fix v < p. For a < k with a # 7: IFp ]AWHAOC\ <w
Thus: {a < & :lFp [Ay N Ay| < w} belongs to D.
Hence: IFps/p [Ay NA| <w. O
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Assume P IF “A is an a.d. family of size > k"
Then P*/D I+ “A is not maximal”.
maximal in VE"/P,

In particular, if P forces a > k, then no a.d. family of VP s

Main point: Taking ultrapowers kills mad families of size > k.

«O> «F>» «=)r» «=)>» = Q>



@ Lecture 1: Definability
@ Suslin ccc forcing
@ lteration of definable forcing
@ Applications

© Lecture 2: Matrices
@ Extending ultrafilters
@ Matrix iterations
@ Applications
© Lecture 3: Ultrapowers
@ Ultrapowers of p.o.'s
@ Ultrapowers and iterations
@ Applications

@ Lecture 4: Witnesses
@ The problem
@ The construction

«O>r «F»r <

it
it
et
S
0
i)



The basic result says:

We next look at ultrapowers of whole iterations.
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We next look at ultrapowers of whole iterations.
The basic result says:

Assume P<o Q. Then P* /D<o Q"/D.
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We next look at ultrapowers of whole iterations.
The basic result says:

Assume P<o Q. Then P* /D<o Q"/D.
Proof: By elementarity:
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We next look at ultrapowers of whole iterations.
The basic result says:

Lemma (Preservation of complete embeddability)
Assume P<o Q. Then P* /D<o Q*/D.

Proof: By elementarity:

Assume D predense in P*/D.

Then: {a < k: {f(a): [f] € D} predense in P} € D.
Hence: {a < k: {f(«) : [f] € D} predense in Q} € D.
Thus: D predense in Q°/D. O
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Assume (P, : v < p) is an iteration.

Then: (P5/D : v < p) is again an iteration.
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Assume (P, : v < p) is an iteration.
Then: (P5/D :+ < u) is again an iteration.
Note that we make no requirements about limits.

In fact, “being a direct limit" is in general NOT preserved by
taking the ultrapower:
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Ultrapowers of iterations

Assume (PP, : v < p) is an iteration.

Then: (P5/D :~ < ) is again an iteration.

Note that we make no requirements about limits.

In fact, “being a direct limit" is in general NOT preserved by
taking the ultrapower:

Lemma (Ultrapower of an iteration)

Assume P, = limdir(P,, : v < p).

Then lim dir(P5 /D : v < p)<o Pj/D.

Also P}, /D = limdir(P5/D : v < p) iff cf (p) # k.
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Assume P, = limdir(P, : v < p).
Then limdir(P5/D : v < p)<o P} /D.

Also P}, /D = lim dir(P5 /D : v < p) iff cf (1) # k.
Proof: Second statement: Let [f] € P}/D.
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Assume P, = limdir(Py : v < p).
Then lim dir(P5/D : v < p)<o P /D.
Also P}, /D = limdir(P5/D : v < u) iff cf (1) # k.

Proof: Second statement: Let [f] € P} /D.
cf (1) # k: there is v < p such that {a : f(a) € P,} € D.

Hence: [f] € P5/D.
Therefore: ]P”"/D is direct limit.
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Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume P, = limdir(Py : v < p).

Then lim dir(P%/D : 5 < p)<o P%/D.

Also P}, /D = limdir(P5/D : v < ,u) iff cf (1) # K

Proof: Second statement: Let [f] € P} /D.

cf (1) # K: thereis v < p such that {a: f(a) € Py} € D.
Hence: [f] € P%/D.
Therefore: P} /D is direct limit.

cf(u) =k and (74 : @ < k) is cofinal in pu:
choose f € P with f(a) € P, \ Py,
Then [f] € ]P’"/D does not beIong to the direct limit.
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Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of iterations

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Lemma (Ultrapower of an iteration)

Assume P, = limdir(P,, : v < p).

Then lim dir(P%/D : 5 < p)<o P%/D.

Also P /D = lim dir(P5 /D : v < p) iff cf () # .

Proof:

First statement: assume cf (1) > w.

Assume {[f,] : n € w} maximal antichain in limdir(P5/D : v < p).
Then: {[f;] : n € w} maximal antichain in some P} /D.

Therefore, also maximal in IP’Z/D. O
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Let us look at an example of an iteration and its ultrapower.
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Let us look at an example of an iteration and its ultrapower.

Fix regular p > k.

Let (D : v < p) be the fsi of Hechler forcing D.
(That is,

) ID)’)"H- = ]D)’Y *D
o D5 = lim dir, 5D, for limit 4.)
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Example for ultrapower of an iteration

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Let us look at an example of an iteration and its ultrapower.

Fix regular p > k.
Let (D, : v < ) be the fsi of Hechler forcing .

Obtain iteration (D5 /D : v < 1) such that:

o D5 /D = limdir, ;D% /D iff cf(8) # &
(In particular, this is true for 6 = p.)
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Let us look at an example of an iteration and its ultrapower.

Fix regular p > k.
Let (D : v < ) be the fsi of Hechler forcing D.

Obtain iteration (D5 /D : v < p) such that:
o DF/D = limdir,<sD%/D iff cf(5) # x
o DY, ,/D=D5/DxD
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Example for ultrapower of an iteration

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Let us look at an example of an iteration and its ultrapower.

Fix regular p > k.
Let (D, : v < ) be the fsi of Hechler forcing D.

Obtain iteration (D5 /D : v < 1) such that:
° D”/D = limdiry ;D5 /D iff cf(0) # &
Df,,/D = D/D«D

(ID)"‘/D v < ) is an fsi of Hechler forcing of length j(1)
(l.e. D5/D = Dj(y.)
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Example for ultrapower of an iteration

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Let us look at an example of an iteration and its ultrapower.

Fix regular p > k.
Let (Dy : v < ) be the fsi of Hechler forcing .

Obtain iteration (D5 /D : v < ) such that:
o D5 /D = limdir,<sD5 /D iff cf () # &
o D ,/D=D/DxD
o (D5/D: v < u)is an fsi of Hechler forcing of length ()

@ The dominating family added by D, is still dominating in
\V/Di/D
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Example for ultrapower of an iteration

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Let us look at an example of an iteration and its ultrapower.

Fix regular p > k.
Let (Dy : v < ) be the fsi of Hechler forcing .

Obtain iteration (D5 /D : v < ) such that:
o D5 /D = limdir,<sD5 /D iff cf () # &
DY, /D =D5/D+D
o (D5/D: v < u)is an fsi of Hechler forcing of length ()

The dominating family added by D, is still dominating in
\V/Di/D

No a.d. family of VP« is mad in vDi/D
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Assume A > p > kK regular.

Start with iteration (]P’?Y Dy < ).
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Assume A > p > kK regular.

Start with iteration (]P’?Y cy < ).
Put ]P}r =

(]P’g)’"”/D. Obtain iteration (IP’,IY Dy < ).
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Assume A > p > kK regular.

Start with iteration (]P’?Y Dy < ).
Put ]P’,;; = (]P’%)’"”/D. Obtain iteration (IP’% cy < ).
Put PZ := (P;)"/D. Obtain iteration (P : v < u). Etc.
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Assume A > p > kK regular.

Start with iteration (]P’?Y Dy < ).
Put ]P’,;; = (]P’%)’"”/D. Obtain iteration (IP’% cy < ).
Put PZ := (P;)"/D. Obtain iteration (P : v < u). Etc.

More generally, for a < A,
put P2*1 .= (P2)*/D. Obtain iteration (P! :~y < ).
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Matrices of iterated ultrapowers

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Assume X > p > K regular.

Start with iteration (IP’g Ly < ).
Put P! := (P%)*/D. Obtain iteration (P : v < u).
)

3 _ (plys L erati :
Put P7 := (P)"/D. Obtain iteration (P3 : v < u). Etc.

More generally, for oo < X,
put IP’?Y‘Jrl := (P$)"/D. Obtain iteration (PS;H sy < ).

What do we do for limit o?
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Lecture 1: Definability
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Lecture 3: Ultrapowers
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Matrices of iterated ultrapowers

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Assume X > p > K regular.

Start with iteration (]P)g Ly < ).
Put Pi’ = (P%)”/D. Obtain iteration (PL : v < pu).
Put P7 := (P)"/D. Obtain iteration (P3 : v < u). Etc.
More generally, for oo < X,

put IP’?Y‘Jrl := (P$)"/D. Obtain iteration (PS;H sy < ).

What do we do for limit o7
For some applications 5 = lim dir5<a]P’,€ will be OK.
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Matrices of iterated ultrapowers

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Assume X > p > K regular.

Start with iteration (]P)g Ly < ).

Put Pif = (P%)”/D. Obtain iteration (PL : v < pu).
Put P7 := (P)"/D. Obtain iteration (P3 : v < u). Etc.
More generally, for oo < X,

put IP’?Y”rl := (P$)"/D. Obtain iteration (PS;H sy < ).

What do we do for limit o7

For some applications 5 = lim dir5<a]P’,€ will be OK.

For some applications want something else:

Suppose (Dg : v < ) are such that D§+1 = ]D)g *D for B < a.
Then still want DY, = DY *ID. Doable but more complicated!
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@ Lecture 1: Definability
@ Suslin ccc forcing
@ lteration of definable forcing
@ Applications

© Lecture 2: Matrices
@ Extending ultrafilters
@ Matrix iterations
@ Applications
© Lecture 3: Ultrapowers
@ Ultrapowers of p.o.'s
@ Ultrapowers and iterations
@ Applications

@ Lecture 4: Witnesses
@ The problem
@ The construction
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AC [w]¥ ad. family: |[ANB|<wforA#Be A
A mad family: A is a.d. and maximal

(Le., for all C € [w]” thereis A € A with |CNA| =w.)
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AC [w]¥ ad. family: |[ANB|<wforA#Be A
A mad family: A is a.d. and maximal

a:= min{|A| : A is infinite mad}, the almost disjointness number.
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AC [w]¥ ad. family: |[ANB|<wforA#Be A
A mad family: A is a.d. and maximal

a:= min{|A| : A is infinite mad}, the almost disjointness number.

U ultrafilter on w.
F base of U: for all A € U thereis B € F with B C* A.
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

More cardinal invariants

A C [w]¥ a.d. family: |[ANB|<wfor A2Be A
A mad family: A is a.d. and maximal

a := min{|A| : A is infinite mad}, the almost disjointness number.

U ultrafilter on w.
F base of U: for all A € U thereis B € F with B C* A.

X(U) := min{|F| : F base of U}, the character of .
u = min{x(U) : U ultrafilter on w}, the ultrafilter number.
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

More cardinal invariants

A C [w]¥ a.d. family: |[ANB| <w for A# B e A
A mad family: A is a.d. and maximal

a := min{|A| : A is infinite mad}, the almost disjointness number.

U ultrafilter on w.
F base of U: for all A € U thereis B € F with B C* A.

X(U) := min{|F| : F base of U}, the character of .
u = min{x(U) : U ultrafilter on w}, the ultrafilter number.

Theorem
(i b<a
(i) t<u
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Assume k is measurable, and A = X\ > u > k are regular.
b =0 = u holds.

Then there is a ccc forcing extension in which a = ¢ = X and
In particular 0 < a is consistent.
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

First application: a versus 0

Theorem (Shelah)

Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b =0 = p holds.

In particular ® < a is consistent.

Proof: Start with (Dg 7y < u): fsi of Hechler forcing.
Repeatedly take ultrapower to get D! = (D2)*/D.

Guarantee in limit step « that still D, = D * .
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Lecture 1: Definability
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Lecture 3: Ultrapowers
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Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

First application: a versus 0

Theorem (Shelah)

Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b =0 = p holds.

In particular ® < a is consistent.

Proof: Start with (Dg 7y < u): fsi of Hechler forcing.
Repeatedly take ultrapower to get D! = (D2)*/D.
Guarantee in limit step « that still D, = D * .

a > X: small a.d. families destroyed by ultrapower.
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

First application: a versus 0

Theorem (Shelah)

Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b =0 = p holds.

In particular ® < a is consistent.

Proof: Start with (ID)9/ 7y < u): fsi of Hechler forcing.
Repeatedly take ultrapower to get D! = (D2)*/D.
Guarantee in limit step « that still D, = D * .

a > X: small a.d. families destroyed by ultrapower.

b=10=p: (D) :v < p)still iteration of D (though not with
direct limits). O
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

First application: a versus 0

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Theorem (Shelah)

Assume k is measurable, and A = \* > u > k are regular.
Then there is a ccc forcing extension in which a = ¢ = X\ and
b =0 = p holds.

In particular 0 < a is consistent.

Remark: Using iterations along templates, Shelah also proved
CON(d < a) on the basis of CON(ZFC) alone.
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Then there is a ccc forcing extension in which a = ¢ = \ and
b=0=u=p holds.

Assume k is measurable, and A = X\ > u > k are regular.

In particular uw < a is consistent.
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Assume k is measurable, and A = X\ > u > k are regular.
Then there is a ccc forcing extension in which a = ¢ = \ and
b=0=u=p holds.

In particular uw < a is consistent.

Proof: Build fsi (]P’g v < ) and names (L{,? cy <), (by iy < )
such that

(i) PY IF U2 is an ultrafilter
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 1

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Theorem (Shelah)

Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b=0=u=p holds.

In particular u < a is consistent.

Proof: Build fsi (P9 : v < 1) and names (Z/IS cy <), (6 iy < p)
such that

(i) PYIF L{S is an ultrafilter

. 0 wp e [R1]
(i) PJI- "¢, is the name for the ]Lag—generlc
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 1

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Theorem (Shelah)

Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b=0=u=p holds.

In particular u < a is consistent.

Proof: Build fsi (P9 : v < 1) and names (Z/IS cy <), (6 iy < p)
such that

(i) PYIF L{S is an ultrafilter
(i) P9 I ", is the name for the L, -generic”
Y

(iii) P9 IF ran(ls) € U2 for § < v
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 1

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Theorem (Shelah)
Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b=0=u=p holds.
In particular u < a is consistent.
Proof: Build fsi (P9 : v < 1) and names (Z/IS cy <), (6 iy < p)
such that

(i) PYIF L{S is an ultrafilter

(i) P9 I ", is the name for the L, -generic”

Y
(iii) P9 IF ran(ls) € U2 for § < v
(iv) PJyq =P x Ly
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 1

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Theorem (Shelah)

Assume k is measurable, and A = \* > . > k are regular.
Then there is a ccc forcing extension in which a = ¢ = A and
b=0=u=p holds.

In particular u < a is consistent.

Proof: Build fsi (}P’g v < u) and names (US ty <), (6 1y < p)
such that

(i) PY I- U2 is an ultrafilter

(i) PY I “(. is the name for the ]Lb-{g-generic”

(iii) PO I ran(fs) € U9 for § < v

(iv) PJyq =P x Ly
Note: (iii) implies

(v) IP’S+1 -Us C LL? and ran(£,) C* ran(fs) for § <~
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Lecture 1: Definability
Lecture 2: Matrices
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Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Second application: a versus u 1

Theorem (Shelah)

Assume k is measurable, and A = X\ > p > K are regular.
Then there is a ccc forcing extension in which a = ¢ = X and
b=0=u=p holds.

In particular w < a is consistent.

Proof: Build fsi (P9 : v < 1) and names (Z/lgJ ty <), (6 iy < p)
such that

(i) IP’g I+ L{S is an ultrafilter

(i) P9 I "/, is the name for the L, -generic”

2l

(iii) P I ran((s) € US for § <~

(iv) P34y =Pgx Ly
Hence: Pg forces Z/{ﬁ is generated by ran(l%), v < W

Jorg Brendle Aspects of iterated forcing



Take the ultrapower P} :=

= (P)~/D.

Obtain iteration (P : fy < p) such that:
(i) P} =lim d1r7<5IP’}Y iff cf(0) # K



Take the ultrapower P} :=

= (P)~/D.

Obtain iteration (P : fy < p) such that:
(i) P} =lim d1r7<5IP’}Y iff cf(0) # K
i) BLI 2L

(ii) PLI-22 is an ultrafilter extending 242
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Take the ultrapower P} :=

= (P)~/D.

Obtain iteration (P : fy < p) such that:
(i) P} =lim d1r7<5IP’}Y iff cf(0) # K
i) BLI 2L

(ii) PLI-22 is an ultrafilter extending 242
L g

(iii) PL I “¢, is the name for the L,;;-generic
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Take the ultrapower P} :=

= (P)~/D.

Obtain iteration (P : fy < p) such that:
(i) P} =lim d1r7<5IP’}Y iff cf(0) # K
(ii) IP’,IY I+ Ll% is an ultrafilter extending U/?
0!

(iii) PL I “¢, is the name for the L,;;-generic
(iv) PLIF ran(fs) € UL for § < v
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Take the ultrapower P} :=

= (P)~/D.

Obtain iteration (P : fy < p) such that:
(i) P} =lim d1r7<5IP’}Y iff cf(0) # K
(ii) IP’,IY I+ Ll% is an ultrafilter extending U/?
0!

(iii) PL I “¢, is the name for the L,;;-generic
1
P * L,

(iv) PLIF ran(fs) € UL for § < v
(V) P’y+1
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Take the ultrapower P} :=

= (P)~/D.

Obtain iteration (P : fy < p) such that:
(i) P} =lim d1r7<5IP’}Y iff cf(0) # K
(ii) IP’,IY I+ Ll% is an ultrafilter extending U/?
0!

(iii) PL I “¢, is the name for the L,;;-generic
1
PS * L,

(iv) P I-ran(fs) € UL for 6 <~
(V) IED'y+1

i
(vi) IP’,IY - U CUL for 6 <y
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 2

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Take the ultrapower P! := (P9)"/D.
Obtain iteration (IF’# : v < p) such that:

(i) P = limdir,sP} iff cf (6) # &
(ii) IP’,ly I+ L{f} is an ultrafilter extending L{S
(i) P IF “(. is the name for the ]Lu%-generic”
(iv) PL Ik ran(fs) € UL for 5 < v
(v) Pl =P xLyp
(vi) IP’,ly Ut C Z/{;l for 6 <~
Repeat this to get P9 = (P2)"/D.
Guarantee in limit step « that still P7,; = PJ *ILL-,;!.
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Lecture 1: Definability
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 2

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Take the ultrapower IP’}Y = (]P’?Y)”/D.
Obtain iteration (IP’% v < p) such that:
(i) P = limdir,sP} iff cf (6) # &
(ii) IP’}Y I+ Z/{él is an ultrafilter extending L[g
(iii) PL I "0, is the name for the Ly;1-generic”
(iv) PLIF ran((s) € Z/I}/ for 6 <~
(v) Pia =P xLyy
(vi) PLIFU} C Ui for 6 <~
Repeat this to get P2 = (P2)"/D. .
Guarantee in limit step « that still PY, =P7 *IL,L-{?.

a > A: small a.d. families destroyed by ultrapower.
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Lecture 1: Definability
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

Second application: a versus u 2

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Take the ultrapower P! := (]P’g)”/D.
Obtain iteration (IP’l ~v < p) such that:

(i) P§ = lim dirysP2 iff cf (6) # &
. 1 b 1 . . . N 0
(i) P5 Ik u7 is an ultrafilter extending U7
(iii) IF’}Y I "€, is the name for the IL,U%—generic”
(iv) PLIF ran((s) € Ul for § <~
( ) IP)'y+1 *]P) *]L‘
(vi) PLIF Ut QZ/{% for I <~
Repeat this to get P2 = (P2)"/D.
Guarantee in limit step « that still PJ,; =P *I‘b'tgf

u = p: taking ultrapowers preserves ultrafilters generated by chains
of length p. O
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Assume k is measurable, and A = \* > k is regular.
Then there is a ccc forcing extension in which ¢ = \ and

b =0 = u =Ny holds, and there is no ultrafilter of character k.

In particular it is consistent that the character spectrum is
non-convex.
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Third application: character spectrum

Theorem (Shelah)

Assume k is measurable, and A\ = \* > & is regular.

Then there is a ccc forcing extension in which ¢ = A and

b =0 =u =Xy holds, and there is no ultrafilter of character k.
In particular it is consistent that the character spectrum is
non-convex.

Proof sketch: As in previous proof with p replaced by N; and IP’8
adds at least x Cohen reals.
(This guarantees the ultrapowers are nontrivial.)
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Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Third application: character spectrum

Theorem (Shelah)

Assume k is measurable, and A\ = \* > & is regular.

Then there is a ccc forcing extension in which ¢ = A and

b =0 =u =Xy holds, and there is no ultrafilter of character k.
In particular it is consistent that the character spectrum is
non-convex.

Proof sketch: As in previous proof with p replaced by N; and IP’8
adds at least x Cohen reals.

k not character: taking ultrapowers kills ultrafilter bases of size k.
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Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Third application: character spectrum

Theorem (Shelah)

Assume k is measurable, and A\ = \* > & is regular.

Then there is a ccc forcing extension in which ¢ = A and

b =0 =u =Xy holds, and there is no ultrafilter of character k.
In particular it is consistent that the character spectrum is
non-convex.

Proof sketch: As in previous proof with p replaced by N; and IP’8
adds at least x Cohen reals.

k not character: taking ultrapowers kills ultrafilter bases of size k.

u = N3 (and thus character): as before.
¢ = X character: in ZFC. [J
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Assume k is measurable, and A = A\ > u > k are regular.
b = p holds.

Then there is a ccc forcing extension in which a =s =c¢= \ and
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b = p holds.

Proof sketch: IP’,OY adds v Cohen reals, v < p.

Assume k is measurable, and A = A\ > u > k are regular.

Then there is a ccc forcing extension in which a =s =c¢= \ and
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Lecture 1: Definability
Lecture 2: Matrices
Lecture 3: Ultrapowers
Lecture 4: Witnesses

Forth application: a and s versus b

Ultrapowers of p.o.'s
Ultrapowers and iterations
Applications

Theorem (B.-Fischer)

Assume k is measurable, and A = X\ > p > K are regular.
Then there is a ccc forcing extension in which a =s = ¢ = X\ and
b = u holds.

Proof sketch: IP’% adds v Cohen reals, v < pu.

Combine the methods of lectures 2 and 3 to make s and a large
while keeping b small.

Build fsi (P : @ < A) such that

(i) for even a, PO =P * My

(ii) for odd , P2*t = (P9)"/D O
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@ Lecture 1: Definability
@ Suslin ccc forcing
@ lteration of definable forcing
@ Applications

© Lecture 2: Matrices
@ Extending ultrafilters
@ Matrix iterations
@ Applications

© Lecture 3: Ultrapowers
@ Ultrapowers of p.o.'s
@ Ultrapowers and iterations
@ Applications

@ Lecture 4: Witnesses
@ The problem
@ The construction
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Today we look at g and h and their relatives.

Suslin ccc iterations and matrix iterations of lectures 1 through 3
keep these cardinals small.

So such iterations cannot be used to separate them.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Relatives of g and f

Today we look at g and § and their relatives.

Suslin ccc iterations and matrix iterations of lectures 1 through 3
keep these cardinals small.

So such iterations cannot be used to separate them.

To separate two such cardinals, we need to build a small witness

for one along the iteration while killing all small witnesses for the
other.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Relatives of g and f

Today we look at g and § and their relatives.

Suslin ccc iterations and matrix iterations of lectures 1 through 3
keep these cardinals small.

So such iterations cannot be used to separate them.

To separate two such cardinals, we need to build a small witness
for one along the iteration while killing all small witnesses for the

other.

For the latter task, use a diamond principle.
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Recall:

A family D C [w]¥ is groupwise dense if
@ D is open

(VAe D VBC* A (BeD))

@ given a partition (I, : n € w) of w into intervals, there is
B € [w]¥ such that | J,cg/lh € D

(this implies, in particular, that D is dense)
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

gand gr 1

Recall:
A family D C [w]¥ is groupwise dense if
@ D is open
(VAe D VBC* A (BeD))
@ given a partition (I, : n € w) of w into intervals, there is
B € [w]” such that |J,cg/h € D
(this implies, in particular, that D is dense)
D is a groupwise dense ideal if it is groupwise dense and closed
under finite unions.
Remark: D groupwise dense ideal <= dual filter D* non-meager.
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g := min{|D| : all D € © groupwise dense and (D = (I}

the groupwise density number.
gr == min{|D| : all D € D groupwise dense ideals and (D = ()

the groupwise density number for ideals.
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g := min{|D| : all D € © groupwise dense and (D = (I}

Clearly g < gr. We show:

the groupwise density number.

the groupwise density number for ideals.
CON(g < gf). I
«O» «Fr « =)
~ JorgBrendle  Aspects of iterated forcing

gr := min{|D| : all D € © groupwise dense ideals and (D = 0}




filter dichotomy FD: V filters F on w, 3f : w — w finite-to-one

such that either f(F) is the cofinite filter or f(F) is an ultrafilter.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: V filters F on w, If : w — w finite-to-one
such that either f(F) is the cofinite filter or f(F) is an ultrafilter.
semi-filter trichotomy: ¥V families X C [w]“ closed under almost
supersets, If : w — w finite-to-one such that either f(X) is the
cofinite filter or f(X) = [w]¥ or f(X) is an ultrafilter.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: V filters F on w, If : w — w finite-to-one
such that either f(F) is the cofinite filter or f(F) is an ultrafilter.
semi-filter trichotomy: ¥V families X C [w]“ closed under almost
supersets, If : w — w finite-to-one such that either f(X) is the
cofinite filter or f(X) = [w]¥ or f(X) is an ultrafilter.

Theorem (Blass-Laflamme)
(i) filter dichotomy FD is equivalent to u < gf

(ii) semi-filter trichotomy is equivalent to u < g
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: V filters F on w, If : w — w finite-to-one
such that either f(F) is the cofinite filter or f(F) is an ultrafilter.
semi-filter trichotomy: ¥V families X C [w]“ closed under almost
supersets, 3f : w — w finite-to-one such that either f(X) is the
cofinite filter or f(X) = [w]¥ or f(X) is an ultrafilter.
Theorem (Blass-Laflamme)

(i) filter dichotomy FD is equivalent to u < g

(ii) semi-filter trichotomy is equivalent to u < g

Are filter dichotomy and semi-filter trichotomy equivalent? I

In our model for g < g¢: u = gr.
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CON(g < gr). I
Outline of proof:
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CON(g < gr). l

Outline of proof:

Assume CH and build fsi of ccc partial orders of length ws.
Along the iteration also build a witness © for g = ;.

Use a diamond principle to kill (initial segments of) potential
witnesses € for gr = Ny in limit stages of cofinality ws.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Outline of proof

Theorem (B.)
CON(g < gr)-

Outline of proof:

Assume CH and build fsi of ccc partial orders of length wy.

Along the iteration also build a witness ® for g = N;j.

Use a diamond principle to kill (initial segments of) potential
witnesses € for gr = Ny in limit stages of cofinality ws.

The main point is that in such a limit stage a certain filter can be
built such that Laver forcing with this filter kills & while at the
same time not destroying (the initial part of) ©

(see Crucial Lemma below).
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@ Lecture 1: Definability
@ Suslin ccc forcing
@ lteration of definable forcing
@ Applications

© Lecture 2: Matrices
@ Extending ultrafilters
@ Matrix iterations
@ Applications

© Lecture 3: Ultrapowers
@ Ultrapowers of p.o.'s
@ Ultrapowers and iterations
@ Applications

@ Lecture 4: Witnesses
@ The problem
@ The construction
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Os2

. there is a sequence (S, C o : a < wp and cf () = wq)
such that VS C wy d stationarily many o with SNa =5,
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{s2: there is a sequence (5« Ca:a<wpand cf(a) = wr)

such that VS C wy d stationarily many a with SNa = 5,.

(see below for details)

«Or 4 Fr «=H» <= = 9Dae

Build fsi (Pa, Qq : @ < wp) of ccc forcing such that
(i) if cf(a) = w1, then Q, =L



{s2: there is a sequence (5« Ca:a<wpand cf(a) = wr)

such that VS C wy d stationarily many a with SNa = 5,.

(see below for details)
(i) if cf (@) < w, then Qq =D

«Or «Fr «=Zr « =) = Q>

Build fsi (Pa, Qq : @ < wp) of ccc forcing such that
(i) if cf(a) = w1, then Q, =L



to witness g = Nj.

Construct groupwise dense families Dg, 3 < wi, along the iteration
Require Dy C Dg for 5/ > .
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Construct groupwise dense families Dg, 3 < wi, along the iteration
to witness g = Nj.

Require Dy C Dg for 5/ > .

More explicitly: have D5* = Dy N V,, such that
o D5 C D3 for 3 >
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Construct groupwise dense families Dg, 3 < wi, along the iteration
to witness g = Ny,

Require Dy C Dg for ' > 3.

More explicitly: have DSa = Ds N V, such that
° D;,a - D<a for 5/ > 3
° DE open

(but not necessarily groupwise dense)
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Construct groupwise dense families Dg, 3 < wi, along the iteration
to witness g = Nj.

Require Dy C Dg for 5/ > .

More explicitly: have D5* = Dy N V,, such that
o D5 C D3 for 3 >

° Dgo‘ open

@ additional conditions, guaranteeing Dy will be groupwise dense

«O» «Fr «=)r « =



To show that (;_,,, Dg = 0, need

VAew*NV, IB<wi A¢Dg

«4O0)>» «Fr «Er» «E)» = Q>
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To show that (;_,,, Dg = 0, need

Argue that

VAew*NV, IB<wi A¢Dg
and

(+a)

VA€ [w]*NV, IB<w A¢D5"

(*a)
VA€W’ N Ve V8 <wi (A¢ D5 implies A¢ D) (fa)

«Or 4 Fr «=H» <= = 9Dae



Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building witnesses 2

To show that (5, D = 0, need
VA€ [w]*NV, 38<w A¢ Dy (+a)
Argue that
VA€W NVa 3<wi Ag D35 (*a)
and
w <a - . <a+1
VA€ W]“NVa V8 <wi (A¢D5"implies A¢DF*™) (fa)

Straightforward: (+,) follows from (ko) and (t4).
Easy: (fa) holds.

Main point: proof of (%) by induction on «a.
Standard: (%) for a limit and « =o' + 1, cf (¢/) < w.
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Main issue: proof of (x,1) in case cf(a) = w;.
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Main issue: proof of (x,1) in case cf(a) = w;.
Also construct filter F,, such that forcing with Q, = L, over V,
destroys potential witness for gr = Nj.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 1

Main issue: proof of (x4-1) in case cf () = w;.
Also construct filter F, such that forcing with Q, = Lz, over V,
destroys potential witness for g = Ny.
We want:
(i) if £g, 8 < wy, is the initial segment of a potential witness for
gr = N1, handed down by <>512, then F, diagonalizes the &3

(that is, for all 8 < wy, FaNEsg # 0)
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 1

Main issue: proof of (x4-1) in case cf () = w;.

Also construct filter F, such that forcing with Q, = Lz, over V,
destroys potential witness for g = Ny.

We want:

(i) if £g, 8 < wy, is the initial segment of a potential witness for
gr = N1, handed down by <>512, then F, diagonalizes the &3
(that is, for all 8 < wy, FaNEsg # 0)

(i) for all partial functions f : w — w from V,, with
dom(f) € Ff and f~1(n) ¢ F. for all n € w, there is
B < w1 such that for all F € F,, f(F N dom(f)) ¢ D5
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 1

Main issue: proof of (x4+1) in case cf (@) = ws.

Also construct filter F, such that forcing with Q, = L £, over V,,
destroys potential witness for g = Ny.

We want:

(i) if £3,8 < w1, is the initial segment of a potential witness for
gr = N1, handed down by <>512, then F, diagonalizes the &3
(that is, for all 8 < w1, FaNEg # D)

(i) for all partial functions f : w — w from V,, with
dom(f) € Ff and f~Y(n) ¢ F for all n € w, there is
B < w1 such that for all F € F,, f(F N dom(f)) ¢ D5

(i): for destroying a witness of gr = N;.
(ii): for proving (*q+1) (and thus building a witness for g = 8y).
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 1

Main issue: proof of (x4+1) in case cf (@) = ws.

Also construct filter F, such that forcing with Q, = L £, over V,,
destroys potential witness for g = Ny.

We want:

(i) if £3,8 < w1, is the initial segment of a potential witness for
gr = N1, handed down by <>512, then F, diagonalizes the &3
(that is, for all 8 < w1, FaNEg # D)

(ii) for all partial functions f : w — w from V|, with
dom(f) € Ff and f~Y(n) ¢ F for all n € w, there is
B < w1 such that for all F € F,, f(F N dom(f)) ¢ D5

(i): for destroying a witness of gr = N;.
(ii): for proving (*q+1) (and thus building a witness for g = 8y).

Crucial Lemma
Assume (*q). In V,, there is F, satisfying (i) and (ii) above.
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Assume cf (o) = w1 and (o) holds. Then (xq+1) is true as well. I
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Assume cf () = w1 and (o) holds. Then (*q+1) is true as well. I
Proof:
Rank analysis of Lz, -names:
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Assume cf (o) = w1 and (o) holds. Then (xq+1) is true as well. l

Proof:

Rank analysis of Lz, -names:

: statement of the forcing language.

o forces p: dp € Lx with stem(p) = o and p IF .
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Assume cf (o) = w1 and (o) holds. Then (xq+1) is true as well. l

Proof:

Rank analysis of Lz, -names:

: statement of the forcing language.

o forces p: dp € Lx with stem(p) = o and p IF .

po(0) =0 if o forces .
a>0: py(o) <aif{n:py,(c7n) <a}eFt.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 2

Crucial Corollary J

Assume cf (o) = wy and (xo) holds. Then (%q+1) is true as well.

Proof:

Rank analysis of Lz, -names:

: statement of the forcing language.

o forces ¢: dp € L with stem(p) = o and p IF .

po(0) = 0 if o forces .
a>0: py(o) <aif{n:py(c7n)<a}eFt.

o favors ¢ if p,(o) is defined (i.e., it is less than wy).
o forces at most one of ¢ and —y and favors at least one of them.
In fact, o favors ¢ iff o does not force —p.

Jorg Brendle Aspects of iterated forcing



Rank analysis of Lz, -names, continued:

Let A be an Lz-name for an infinite subset of w.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 3

Rank analysis of Lz, -names, continued:

Let A be an Lz-name for an infinite subset of w.

rk(c) =0 if
o either there is B € [w]* such that, for all n € B, o favors
ncA

@ or there is a partial function f : w — w such that
dom(f)_e F*, fY(n) ¢ F* forall n € w, and 0" n favors
f(n) € A for all n € dom(f)
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 3

Rank analysis of Lz, -names, continued:

Let A be an Lz-name for an infinite subset of w.

rk(c) =0 if
o either there is B € [w]* such that, for all n € B, o favors
ncA

@ or there is a partial function f : w — w such that
dom(f)_e F*, fY(n) ¢ F* forall n € w, and 0" n favors
f(n) € A for all n € dom(f)

a>0: rk(o) <aif{n:rk(c™n)<a} e FT .
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 3

Rank analysis of Lz, -names, continued:

Let A be an Lz-name for an infinite subset of w.

rk(c) =0 if
o either there is B € [w]* such that, for all n € B, o favors
ncA

@ or there is a partial function f : w — w such that
dom(f)_e F*, fY(n) ¢ F* forall n € w, and 0" n favors
f(n) € A for all n € dom(f)

a>0: rk(o) <aif{n:rk(c™n)<a} e FT .

Claim: rk(c) is defined for all o. O
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the definition of rk.

For o with rk(o) = 0 fix either a witness B, or a witness f; as in
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For o with rk(o) = 0 fix either a witness B, or a witness f; as in
the definition of rk.

For o of rank 0 such that B, is defined, use (*) to find 7, such
that B, ¢ D5

«4O0)r «Fr «=E» « =



Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 4

For o with rk(o) = 0 fix either a witness B, or a witness f; as in
the definition of rk.

For o of rank 0 such that B, is defined, use (*) to find 7, such
that B, ¢ D5

For o of rank 0 such that f; is defined, use property (ii), which
holds for F, by Crucial Lemma, to find -, such that for all

F € Fa. f(F Ndom(f,)) ¢ DS
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 4

For o with rk(o) = 0 fix either a witness B, or a witness f; as in
the definition of rk.

For o of rank 0 such that B, is defined, use (*) to find 7, such
that B, ¢ D5

For o of rank 0 such that f; is defined, use property (ii), which
holds for F, by Crucial Lemma, to find -, such that for all

F € Fa. f(F Ndom(f,)) ¢ DS

Let B> sup, .
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[ / <a+1
Claim: |- A ¢ Dz

Assume: JB € DﬂSa and p € Lz, such that pl- AC B.
Wilog: o := stem(p) has rank 0.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 5

S / <a+l
Claim: |- A ¢ Dz

Assume: 3B € Dgo‘ and p € Lz, such that pl- AC B.
Wiog: o := stem(p) has rank 0.

Assume first B, is defined. By assumption: B, \ B is infinite.

Choose k € B, \ B. Since o favors k € A: 3¢ < p such that
qlF k € A, a contradiction.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 5

S / <a+l
Claim: |- A ¢ Dz

Assume: 3B € Dgo‘ and p € Lz, such that pl- AC B.
Wiog: o := stem(p) has rank 0.

Assume first B, is defined. By assumption: B, \ B is infinite.
Choose k € B, \ B. Since o favors k € A: 3¢ < p such that
qlF k € A, a contradiction.

Assume next f; is defined. Let F := succy(o). By (ii):
f-(F N dom(f,)) ¢ D;a. Hence: choose n € F N dom(f,) such

that k := f;(n) ¢ B. Since 0™ n favors k € A: 3g < p with
stem(q) 2 0" n such that g IF k € A, again a contradiction.
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Lecture 1: Definability
Lecture 2: Matrices The problem
Lecture 3: Ultrapowers The construction
Lecture 4: Witnesses

Building and destroying witnesses 5

S / <a+l
Claim: |- A ¢ Dz

Assume: 3B € Dgo‘ and p € Lz, such that pl- AC B.
Wiog: o := stem(p) has rank 0.

Assume first B, is defined. By assumption: B, \ B is infinite.
Choose k € B, \ B. Since o favors k € A: 3¢ < p such that
qlF k € A, a contradiction.

Assume next f; is defined. Let F := succy(o). By (ii):

f-(F N dom(f,)) ¢ D;a. Hence: choose n € F N dom(f,) such
that k := f,(n) ¢ B. Since o n favors k € A: 3g < p with
stem(g) D 0 n such that g IF k € A, again a contradiction.

Proves Crucial Corollary. [J
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g =Ny holds in V,,
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g = Ny holds in V,, I
Proof: Know: (%) holds for all .. Implies: g =X;. O
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g = Ny holds in V,,,

gr = Ny holds in V,,

Proof: & = {€5 : # < w1} family of groupwise dense ideals.
By ¢s2 and (i) of Crucial Lemma:

Ja such that (EgN Vo) N Fy # 0 for all § < wy.
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g = Ny holds in V,,

gr = Ny holds in V,,

Proof: & = {€5 : # < w1} family of groupwise dense ideals.
By ¢s2 and (i) of Crucial Lemma:
Ja such that (EgN Vo) N Fy # 0 for all § < wy.

Lz, adds pseudointersection through filter F, i.e., a set X € [w]¥
such that for all 8 < w; there is Bg € €N V,, with X C* Bg.
Eg open: X € ﬂﬂ Es. Thus & cannot witness gr = N;. [

«O>» «Fr «=» <«
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