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Suslin ccc forcing

A p.o. P is called a Suslin ccc forcing notion if it is ccc and

P ⊆ ωω,

≤P⊆ ωω × ωω, and

⊥P⊆ ωω × ωω

are all analytic sets.
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Suslin ccc forcing

A p.o. P is called a Suslin ccc forcing notion if it is ccc and

P ⊆ ωω,

≤P⊆ ωω × ωω, and

⊥P⊆ ωω × ωω

are all analytic sets.

Assume M |= ZFC . If the parameters in the definition of P, ≤P,
and ⊥P are in M, we may interpret P in M. Denote this
interpretation by PM .
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Suslin ccc forcing

A p.o. P is called a Suslin ccc forcing notion if it is ccc and

P ⊆ ωω,

≤P⊆ ωω × ωω, and

⊥P⊆ ωω × ωω

are all analytic sets.

Assume M |= ZFC . If the parameters in the definition of P, ≤P,
and ⊥P are in M, we may interpret P in M. Denote this
interpretation by PM .

Assume M ⊆ N. By Σ1
1 absoluteness, the statements p ∈ P,

q ≤P p and p ⊥P q are absolute between M and N.
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Examples for Suslin ccc forcing 1

Hechler forcing D:

Conditions: pairs (s, f ) with f ∈ ωω and s ⊆ f finite

Order: (t, g) ≤ (s, f ) if t ⊇ s and g ≥ f (everywhere)
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Examples for Suslin ccc forcing 1

Hechler forcing D:

Conditions: pairs (s, f ) with f ∈ ωω and s ⊆ f finite

Order: (t, g) ≤ (s, f ) if t ⊇ s and g ≥ f (everywhere)

Properties:

σ-centered (thus ccc)

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Examples for Suslin ccc forcing 1

Hechler forcing D:

Conditions: pairs (s, f ) with f ∈ ωω and s ⊆ f finite

Order: (t, g) ≤ (s, f ) if t ⊇ s and g ≥ f (everywhere)

Properties:

σ-centered (thus ccc)

adds a generic Hechler real

d =
⋃

{s : there is f ∈ ωω such that (s, f ) ∈ G}
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Examples for Suslin ccc forcing 1

Hechler forcing D:

Conditions: pairs (s, f ) with f ∈ ωω and s ⊆ f finite

Order: (t, g) ≤ (s, f ) if t ⊇ s and g ≥ f (everywhere)

Properties:

σ-centered (thus ccc)

adds a generic Hechler real

d =
⋃

{s : there is f ∈ ωω such that (s, f ) ∈ G}

d is a dominating real,
i.e. f ≤∗ d for every f ∈ ωω from the ground model.
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Examples for Suslin ccc forcing 2

Check D is Suslin ccc:
identify D with ω × ωω ∼= ωω via (s, f ) 7→ (|s|, f ).
Then:
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Examples for Suslin ccc forcing 2

Check D is Suslin ccc:
identify D with ω × ωω ∼= ωω via (s, f ) 7→ (|s|, f ).
Then:

the order is a closed relation
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Examples for Suslin ccc forcing 2

Check D is Suslin ccc:
identify D with ω × ωω ∼= ωω via (s, f ) 7→ (|s|, f ).
Then:

the order is a closed relation

(s, f ) and (t, g) are incompatible iff
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Examples for Suslin ccc forcing 2

Check D is Suslin ccc:
identify D with ω × ωω ∼= ωω via (s, f ) 7→ (|s|, f ).
Then:

the order is a closed relation

(s, f ) and (t, g) are incompatible iff

either s and t are incomparable (a clopen relation)

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Examples for Suslin ccc forcing 2

Check D is Suslin ccc:
identify D with ω × ωω ∼= ωω via (s, f ) 7→ (|s|, f ).
Then:

the order is a closed relation

(s, f ) and (t, g) are incompatible iff

either s and t are incomparable (a clopen relation)
or one extends the other, say s ⊆ t for simplicity, and
t(n) < f (n) for some n (again a clopen relation).
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Examples for Suslin ccc forcing 3

Amoeba forcing A:

Conditions: open sets U ⊆ 2ω of measure less than 1
2

Order: V ≤ U iff V ⊇ U
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Examples for Suslin ccc forcing 3

Amoeba forcing A:

Conditions: open sets U ⊆ 2ω of measure less than 1
2

Order: V ≤ U iff V ⊇ U

Properties:

σ-linked (thus ccc)
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Examples for Suslin ccc forcing 3

Amoeba forcing A:

Conditions: open sets U ⊆ 2ω of measure less than 1
2

Order: V ≤ U iff V ⊇ U

Properties:

σ-linked (thus ccc)

adds an open subset a =
⋃

G of 2ω of measure 1
2

(an amoeba real)
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Examples for Suslin ccc forcing 3

Amoeba forcing A:

Conditions: open sets U ⊆ 2ω of measure less than 1
2

Order: V ≤ U iff V ⊇ U

Properties:

σ-linked (thus ccc)

adds an open subset a =
⋃

G of 2ω of measure 1
2

(an amoeba real)

makes union of ground model null sets a null set
(because X ⊆ a + r for every ground model null X and every
rational r)
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Examples for Suslin ccc forcing 3

Amoeba forcing A:

Conditions: open sets U ⊆ 2ω of measure less than 1
2

Order: V ≤ U iff V ⊇ U

Properties:

σ-linked (thus ccc)

adds an open subset a =
⋃

G of 2ω of measure 1
2

(an amoeba real)

makes union of ground model null sets a null set
(because X ⊆ a + r for every ground model null X and every
rational r)

Coding open sets by reals we see that A is Suslin ccc.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M ⊆ N be ZFC-models. Let P ∈ M be Suslin ccc.
Then “A is a maximal antichain in P” is a Σ1

1 ∪Π1
1 statement, and

therefore absolute between M and N.
If P is a Borel set, being a maximal antichain is in fact Π1

1.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M ⊆ N be ZFC-models. Let P ∈ M be Suslin ccc.
Then “A is a maximal antichain in P” is a Σ1

1 ∪Π1
1 statement, and

therefore absolute between M and N.
If P is a Borel set, being a maximal antichain is in fact Π1

1.

Proof: ccc: antichains are countable and coded by reals.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M ⊆ N be ZFC-models. Let P ∈ M be Suslin ccc.
Then “A is a maximal antichain in P” is a Σ1

1 ∪Π1
1 statement, and

therefore absolute between M and N.
If P is a Borel set, being a maximal antichain is in fact Π1

1.

Proof: ccc: antichains are countable and coded by reals.
Let A = {xn : n ∈ ω} ⊆ P. A is a maximal antichain iff

xn ⊥P xm for all n 6= m and,

for all y , either y /∈ P or there is n such that y 6⊥P xn.
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Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let M ⊆ N be ZFC-models. Let P ∈ M be Suslin ccc.
Then “A is a maximal antichain in P” is a Σ1

1 ∪Π1
1 statement, and

therefore absolute between M and N.
If P is a Borel set, being a maximal antichain is in fact Π1

1.

Proof: ccc: antichains are countable and coded by reals.
Let A = {xn : n ∈ ω} ⊆ P. A is a maximal antichain iff

xn ⊥P xm for all n 6= m and,

for all y , either y /∈ P or there is n such that y 6⊥P xn.

The first part is Σ1
1, while the second is Π1

1. Thus Σ1
1 absoluteness

applies. �
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Absoluteness 2

Corollary (downward absoluteness of genericity)

Let M ⊆ N be ZFC-models. Let P ∈ M be Suslin ccc.
If G is PN -generic over N, then G ∩ M is PM -generic over M.
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Absoluteness 2

Corollary (downward absoluteness of genericity)

Let M ⊆ N be ZFC-models. Let P ∈ M be Suslin ccc.
If G is PN -generic over N, then G ∩ M is PM -generic over M.

Proof: Let A ∈ M be a maximal antichain of P in M.
By previous lemma: A maximal antichain of P in N.
Hence G ∩ A 6= ∅. �
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Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let P0<◦ P1 be p.o.’s. Let Q̇i be Pi -names for p.o.’s such that
P1 
 Q̇0 ⊆ Q̇1 and all maximal antichains of Q̇0 in V P0 are
maximal antichains of Q̇1 in V P1 .
Then P0 ⋆ Q̇0<◦ P1 ⋆ Q̇1.
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Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let P0<◦ P1 be p.o.’s. Let Q̇i be Pi -names for p.o.’s such that
P1 
 Q̇0 ⊆ Q̇1 and all maximal antichains of Q̇0 in V P0 are
maximal antichains of Q̇1 in V P1 .
Then P0 ⋆ Q̇0<◦ P1 ⋆ Q̇1.

Proof: Let A be a maximal antichain in P0 ⋆ Q̇0.
Need to show: A still maximal in P1 ⋆ Q̇1.
Let (p0, q̇0) ∈ P1 ⋆ Q̇1.
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Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let P0<◦ P1 be p.o.’s. Let Q̇i be Pi -names for p.o.’s such that
P1 
 Q̇0 ⊆ Q̇1 and all maximal antichains of Q̇0 in V P0 are
maximal antichains of Q̇1 in V P1 .
Then P0 ⋆ Q̇0<◦ P1 ⋆ Q̇1.

Proof: Let A be a maximal antichain in P0 ⋆ Q̇0.
Need to show: A still maximal in P1 ⋆ Q̇1.
Let (p0, q̇0) ∈ P1 ⋆ Q̇1.
Fix P1-generic filter G over V containing p0.
By assumption, G ∩ P0 is P0-generic over V .
In V [G ∩ P0], let

B = {q ∈ Q0 : ∃(p, q̇) ∈ A with p ∈ G and q = q̇[G ∩ P0]}.
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Embeddability in iterations 2

Check: B is a maximal antichain in Q0 in V [G ∩ P0]!
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Embeddability in iterations 2

Check: B is a maximal antichain in Q0 in V [G ∩ P0]!
By assumption, B maximal in Q1 in V [G ].
Hence there is q ∈ B compatible with q̇0[G ].
Let (p, q̇) ∈ A witness q = q̇[G ∩ P0] ∈ B.
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Embeddability in iterations 2

Check: B is a maximal antichain in Q0 in V [G ∩ P0]!
By assumption, B maximal in Q1 in V [G ].
Hence there is q ∈ B compatible with q̇0[G ].
Let (p, q̇) ∈ A witness q = q̇[G ∩ P0] ∈ B.
There is p̄ ∈ G forcing that q̇ and q̇0 are compatible, with common
extension ˙̄q. Wlog p̄ ≤ p, p0. Then (p̄, ˙̄q) ≤ (p, q̇), (p0, q̇0). �

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Embeddability in iterations 2

Check: B is a maximal antichain in Q0 in V [G ∩ P0]!
By assumption, B maximal in Q1 in V [G ].
Hence there is q ∈ B compatible with q̇0[G ].
Let (p, q̇) ∈ A witness q = q̇[G ∩ P0] ∈ B.
There is p̄ ∈ G forcing that q̇ and q̇0 are compatible, with common
extension ˙̄q. Wlog p̄ ≤ p, p0. Then (p̄, ˙̄q) ≤ (p, q̇), (p0, q̇0). �

Corollary (embeddability of Suslin ccc forcing)

Let P0<◦ P1 be p.o.’s.
Assume Q is a Suslin ccc forcing coded in V P0 .
Then P0 ⋆ Q̇V P0 <◦ P1 ⋆ Q̇V P1 .
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Embeddability in iterations 2

Check: B is a maximal antichain in Q0 in V [G ∩ P0]!
By assumption, B maximal in Q1 in V [G ].
Hence there is q ∈ B compatible with q̇0[G ].
Let (p, q̇) ∈ A witness q = q̇[G ∩ P0] ∈ B.
There is p̄ ∈ G forcing that q̇ and q̇0 are compatible, with common
extension ˙̄q. Wlog p̄ ≤ p, p0. Then (p̄, ˙̄q) ≤ (p, q̇), (p0, q̇0). �

Corollary (embeddability of Suslin ccc forcing)

Let P0<◦ P1 be p.o.’s.
Assume Q is a Suslin ccc forcing coded in V P0 .
Then P0 ⋆ Q̇V P0 <◦ P1 ⋆ Q̇V P1 .

Proof: Immediate by previous lemma and absoluteness of maximal
antichains of Suslin ccc forcing. �
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Finite support iteration

Let δ be an ordinal. Let Qα, α < δ, be Suslin ccc, all coded in V .
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Finite support iteration

Let δ be an ordinal. Let Qα, α < δ, be Suslin ccc, all coded in V .

One can recursively define the finite support iteration (fsi)
(Pα : α ≤ δ) with iterands Qα in the usual way, letting Pα+1 be

the two-step iteration of Pα and Q̇V Pα

α (the reinterpretation of Qα

in the Pα-generic extension).

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Finite support iteration

Let δ be an ordinal. Let Qα, α < δ, be Suslin ccc, all coded in V .

One can recursively define the finite support iteration (fsi)
(Pα : α ≤ δ) with iterands Qα in the usual way, letting Pα+1 be

the two-step iteration of Pα and Q̇V Pα

α (the reinterpretation of Qα

in the Pα-generic extension).

We will also look at fragments of this iteration.
By the absoluteness properties described above, all these fragments
will completely embed into the whole iteration in a canonical way.
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Fragments of the iteration

Fix X ⊆ δ.
By recursion on α ≤ δ, define the p.o. PX∩α:

PX∩0 = {1}
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Fragments of the iteration

Fix X ⊆ δ.
By recursion on α ≤ δ, define the p.o. PX∩α:

PX∩0 = {1}

PX∩(α+1) =

{

PX∩α if α /∈ X

PX∩α ⋆ Q̇V PX∩α

α if α ∈ X

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Fragments of the iteration

Fix X ⊆ δ.
By recursion on α ≤ δ, define the p.o. PX∩α:

PX∩0 = {1}

PX∩(α+1) =

{

PX∩α if α /∈ X

PX∩α ⋆ Q̇V PX∩α

α if α ∈ X

For limit γ, PX∩γ = limdirα<γPX∩α

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Fragments of the iteration

Fix X ⊆ δ.
By recursion on α ≤ δ, define the p.o. PX∩α:

PX∩0 = {1}

PX∩(α+1) =

{

PX∩α if α /∈ X

PX∩α ⋆ Q̇V PX∩α

α if α ∈ X

For limit γ, PX∩γ = limdirα<γPX∩α

Clearly, for X = δ one obtains the standard fsi (Pα : α ≤ δ)
mentioned above.
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Embeddability of fragments 1

Lemma (embeddability of fragments)

Assume X ⊆ Y ⊆ δ. Then PX<◦ PY .

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Suslin ccc forcing
Iteration of definable forcing
Applications

Embeddability of fragments 1

Lemma (embeddability of fragments)

Assume X ⊆ Y ⊆ δ. Then PX<◦ PY .

Proof: Prove by induction on α ≤ δ that PX∩α<◦ PY∩α.

Basic step: trivial.
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Embeddability of fragments 1

Lemma (embeddability of fragments)

Assume X ⊆ Y ⊆ δ. Then PX<◦ PY .

Proof: Prove by induction on α ≤ δ that PX∩α<◦ PY∩α.

Basic step: trivial.

Successor step: let β = α + 1.
If α /∈ X ,

PX∩β = PX∩α<◦ PY∩α<◦ PY∩β

by definition and induction hypothesis.
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Embeddability of fragments 2

So assume α ∈ X . Recall:

Corollary (embeddability of Suslin ccc forcing)

Let P0<◦ P1 be p.o.’s.
Assume Q is a Suslin ccc forcing coded in V P0 .
Then P0 ⋆ Q̇V P0 <◦ P1 ⋆ Q̇V P1 .

By induction hypothesis and embeddability of Suslin ccc forcing,

PX∩β = PX∩α ⋆ Q̇V PX∩α

α <◦ PY∩α ⋆ Q̇V PY∩α

α = PY∩β
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Embeddability of fragments 2

So assume α ∈ X . By induction hypothesis and embeddability of
Suslin ccc forcing,

PX∩β = PX∩α ⋆ Q̇V PX∩α

α <◦ PY∩α ⋆ Q̇V PY∩α

α = PY∩β

Limit step: exercise! �
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Localization 1

Lemma (localization)

Let α ≤ δ.

(i) Let p ∈ Pα.
Then there is X ⊆ α countable such that p ∈ PX .

(ii) Let ḟ be a Pα-name for a real.
Then there is X ⊆ α countable such that ḟ is a PX -name for
a real.
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Localization 1

Lemma (localization)

Let α ≤ δ.

(i) Let p ∈ Pα.
Then there is X ⊆ α countable such that p ∈ PX .

(ii) Let ḟ be a Pα-name for a real.
Then there is X ⊆ α countable such that ḟ is a PX -name for
a real.

Proof: Simultaneous induction on α ≤ δ.

Basic step: trivial.
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Localization 2

Successor step: let β = α + 1.
(i) Let (p, q̇) ∈ Pα ⋆ Q̇α = Pβ .
By induction hypothesis for (i) and (ii): there are countable X0

and X1 such that p ∈ PX0 and q̇ is a PX1-name.
Let X = X0 ∪ X1 ∪ {α}. Then (p, q̇) ∈ PX .
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Localization 2

Successor step: let β = α + 1.
(i) Let (p, q̇) ∈ Pα ⋆ Q̇α = Pβ .
By induction hypothesis for (i) and (ii): there are countable X0

and X1 such that p ∈ PX0 and q̇ is a PX1-name.
Let X = X0 ∪ X1 ∪ {α}. Then (p, q̇) ∈ PX .
(ii) Let ḟ be a Pβ-name for a real.
There a countable maximal antichains {pm

n : m ∈ ω} ⊆ Pβ and
numbers {km

n : m ∈ ω}, such that pm
n 
 ḟ (n) = km

n .
By (i): there are countable Xm

n such that pm
n ∈ PXm

n
.

Let X =
⋃

n,m Xm
n .

Since ḟ is completely decided by pm
n and km

n , it is PX -name.
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Localization 2

Successor step: let β = α + 1.
(i) Let (p, q̇) ∈ Pα ⋆ Q̇α = Pβ .
By induction hypothesis for (i) and (ii): there are countable X0

and X1 such that p ∈ PX0 and q̇ is a PX1-name.
Let X = X0 ∪ X1 ∪ {α}. Then (p, q̇) ∈ PX .
(ii) Let ḟ be a Pβ-name for a real.
There a countable maximal antichains {pm

n : m ∈ ω} ⊆ Pβ and
numbers {km

n : m ∈ ω}, such that pm
n 
 ḟ (n) = km

n .
By (i): there are countable Xm

n such that pm
n ∈ PXm

n
.

Let X =
⋃

n,m Xm
n .

Since ḟ is completely decided by pm
n and km

n , it is PX -name.

Limit step: (i) trivial. (ii) follows from (i) as above. �
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Direct limit 1

Corollary (representation as direct limit)

Let X ⊆ P(δ) be a directed family of sets such that for every
countable Y ⊆ δ there is X ∈ X with Y ⊆ X.
Then Pδ = limdirX∈XPX .
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Direct limit 1

Corollary (representation as direct limit)

Let X ⊆ P(δ) be a directed family of sets such that for every
countable Y ⊆ δ there is X ∈ X with Y ⊆ X.
Then Pδ = limdirX∈XPX .

Proof:
By embeddability of fragments, the direct limit is a subset of Pδ.
By localization, then, the two sets are actually equal. �
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Direct limit 1

Corollary (representation as direct limit)

Let X ⊆ P(δ) be a directed family of sets such that for every
countable Y ⊆ δ there is X ∈ X with Y ⊆ X.
Then Pδ = limdirX∈XPX .

Proof:
By embeddability of fragments, the direct limit is a subset of Pδ.
By localization, then, the two sets are actually equal. �

Corollary

Pδ = lim dir{PX : X ⊆ δ is countable}.
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Direct limit 1

Corollary (representation as direct limit)

Let X ⊆ P(δ) be a directed family of sets such that for every
countable Y ⊆ δ there is X ∈ X with Y ⊆ X.
Then Pδ = limdirX∈XPX .

Proof:
By embeddability of fragments, the direct limit is a subset of Pδ.
By localization, then, the two sets are actually equal. �

Corollary

Pδ = lim dir{PX : X ⊆ δ is countable}.

Question

What can we say about the direct limit of finite fragments of
Suslin ccc iterations? E.g., for Hechler forcing.
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Direct limit 2

Lemma

Assume P is Suslin ccc, and Pδ is an iteration of Suslin ccc forcing.
Consider P ⋆ Ṗδ.
No new real of V P \ V belongs to V Pδ (in V P⋆Ṗδ).
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Direct limit 2

Lemma

Assume P is Suslin ccc, and Pδ is an iteration of Suslin ccc forcing.
Consider P ⋆ Ṗδ.
No new real of V P \ V belongs to V Pδ (in V P⋆Ṗδ).

Warning: This is not true for iterations of forcing notions in
general. For example, if s0 is Sacks generic over V , and s1 is Sacks
generic over V [s0], then s0 ∈ V [s1].
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Direct limit 2

Lemma

Assume P is Suslin ccc, and Pδ is an iteration of Suslin ccc forcing.
Consider P ⋆ Ṗδ.
No new real of V P \ V belongs to V Pδ (in V P⋆Ṗδ).

Corollary (representation as ω1-stage direct limit)

Let δ be uncountable. Let Xα, α < ω1, be a strictly increasing
sequence of subsets of δ with δ =

⋃

α Xα.
Then Pδ = limdirαPXα . Furthermore,

(i) ωω ∩ V Pδ =
⋃

α(ωω ∩ V PXα )

(ii) ωω ∩ (V PXα+1 \ V PXα ) 6= ∅ for α < ω1
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Direct limit 2

Lemma

Assume P is Suslin ccc, and Pδ is an iteration of Suslin ccc forcing.
Consider P ⋆ Ṗδ.
No new real of V P \ V belongs to V Pδ (in V P⋆Ṗδ).

Corollary (representation as ω1-stage direct limit)

Let δ be uncountable. Let Xα, α < ω1, be a strictly increasing
sequence of subsets of δ with δ =

⋃

α Xα.
Then Pδ = limdirαPXα . Furthermore,

(i) ωω ∩ V Pδ =
⋃

α(ωω ∩ V PXα )

(ii) ωω ∩ (V PXα+1 \ V PXα ) 6= ∅ for α < ω1

Proof: first part: representation as direct limit.
second part: (i) localization. (ii) apply lemma above. �
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1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Cardinal invariants of the continuum 1

For our applications, we need some of the basic
cardinal invariants of the continuum.
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Cardinal invariants of the continuum 1

For our applications, we need some of the basic
cardinal invariants of the continuum.

For f , g ∈ ωω:

f ≤∗ g (g eventually dominates f )

⇐⇒ f (n) ≤ g(n) for all but finitely many n
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Cardinal invariants of the continuum 1

For our applications, we need some of the basic
cardinal invariants of the continuum.

For f , g ∈ ωω:

f ≤∗ g (g eventually dominates f )

⇐⇒ f (n) ≤ g(n) for all but finitely many n

b := min{|F| : F is unbounded in (ωω,≤∗)},
the bounding number.

d := min{|F| : F is cofinal in (ωω,≤∗)}, the dominating number.
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Cardinal invariants of the continuum 2

For A, B ⊆ ω:

A ⊆∗ B (A is almost contained in B) ⇐⇒ A \ B is finite
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Cardinal invariants of the continuum 2

For A, B ⊆ ω:

A ⊆∗ B (A is almost contained in B) ⇐⇒ A \ B is finite

For A, B ∈ [ω]ω:

A splits B ⇐⇒ |A ∩ B| = |B \ A| = ℵ0
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Cardinal invariants of the continuum 2

For A, B ⊆ ω:

A ⊆∗ B (A is almost contained in B) ⇐⇒ A \ B is finite

For A, B ∈ [ω]ω:

A splits B ⇐⇒ |A ∩ B| = |B \ A| = ℵ0

F ⊆ [ω]ω is splitting if every member of [ω]ω is split by a member
of F .
F ⊆ [ω]ω is unsplit (or unreaped) if no member of [ω]ω splits all
members of F . I.e. ∀A ∈ [ω]ω ∃B ∈ F (|A ∩ B| < ℵ0 or B ⊆∗ A)
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Cardinal invariants of the continuum 2

For A, B ⊆ ω:

A ⊆∗ B (A is almost contained in B) ⇐⇒ A \ B is finite

For A, B ∈ [ω]ω:

A splits B ⇐⇒ |A ∩ B| = |B \ A| = ℵ0

F ⊆ [ω]ω is splitting if every member of [ω]ω is split by a member
of F .
F ⊆ [ω]ω is unsplit (or unreaped) if no member of [ω]ω splits all
members of F .

s := min{|F| : F is splitting}, the splitting number.
r := min{|F| : F is unsplit}, the reaping number.
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Cardinal invariants of the continuum 3

D ⊆ [ω]ω dense: ∀A ∈ [ω]ω ∃B ∈ D (B ⊆∗ A)
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Cardinal invariants of the continuum 3

D ⊆ [ω]ω dense: ∀A ∈ [ω]ω ∃B ∈ D (B ⊆∗ A)
D ⊆ [ω]ω open: ∀A ∈ D ∀B ⊆∗ A (B ∈ D)
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Cardinal invariants of the continuum 3

D ⊆ [ω]ω dense: ∀A ∈ [ω]ω ∃B ∈ D (B ⊆∗ A)
D ⊆ [ω]ω open: ∀A ∈ D ∀B ⊆∗ A (B ∈ D)

A family D ⊆ [ω]ω is groupwise dense if

D is open

given a partition (In : n ∈ ω) of ω into intervals, there is
B ∈ [ω]ω such that

⋃

n∈B In ∈ D
(this implies, in particular, that D is dense)
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Cardinal invariants of the continuum 3

D ⊆ [ω]ω dense: ∀A ∈ [ω]ω ∃B ∈ D (B ⊆∗ A)
D ⊆ [ω]ω open: ∀A ∈ D ∀B ⊆∗ A (B ∈ D)

A family D ⊆ [ω]ω is groupwise dense if

D is open

given a partition (In : n ∈ ω) of ω into intervals, there is
B ∈ [ω]ω such that

⋃

n∈B In ∈ D
(this implies, in particular, that D is dense)

h := min{|D| : all D ∈ D open dense and
⋂

D = ∅}
the distributivity number.

g := min{|D| : all D ∈ D groupwise dense and
⋂

D = ∅}
the groupwise density number.
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Cardinal invariants of the continuum 4

I ideal on the reals.

add(I) := min{|F| : F ⊆ I and
⋃

F /∈ I}, the additivity of I.
cof(I) := min{|F| : F ⊆ I is a basis}, the cofinality of I.

Basis: F ⊆ I such every member of I is contained in some
member of F .
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Cardinal invariants of the continuum 4

I ideal on the reals.

add(I) := min{|F| : F ⊆ I and
⋃

F /∈ I}, the additivity of I.
cof(I) := min{|F| : F ⊆ I is a basis}, the cofinality of I.

Basis: F ⊆ I such every member of I is contained in some
member of F .

Theorem

(i) h ≤ min{b, s, g} and g ≤ d

(ii) b ≤ d

(iii) b ≤ r and dually s ≤ d

(iv) add(N ) ≤ b and dually d ≤ cof(N ) for the null ideal N
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ZFC-inequalities: a diagram

ℵ1

hadd(N )

sb g

dr

cof(N )

c
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@
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First application: b versus g 1

Theorem

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then, in the Pλ-extension, g = ℵ1.
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First application: b versus g 1

Theorem

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then, in the Pλ-extension, g = ℵ1.

Corollary

Let Dλ be the fsi of Hechler forcing D.
In the Dλ-extension, b = d = λ while g = ℵ1.
In particular, g < b is consistent.
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First application: b versus g 1

Theorem

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then, in the Pλ-extension, g = ℵ1.

Corollary

Let Dλ be the fsi of Hechler forcing D.
In the Dλ-extension, b = d = λ while g = ℵ1.
In particular, g < b is consistent.

Proof: b = d = λ because we add a λ-scale
(a well-ordered dominating family of size λ).
g = ℵ1 follows from Theorem. �
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First application: b versus g 1

Theorem

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then, in the Pλ-extension, g = ℵ1.

Corollary

Let Dλ be the fsi of Hechler forcing D.
In the Dλ-extension, b = d = λ while g = ℵ1.
In particular, g < b is consistent.

Corollary

Let Aλ be the fsi of amoeba forcing A.
In the Aλ-extension, add(N ) = cof(N ) = λ while g = ℵ1.
In particular, g < add(N ) is consistent.
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First application: b versus g 2

Theorem follows from:

Corollary (representation as ω1-stage direct limit)

Let δ be uncountable. Let Xα, α < ω1 be a strictly increasing
sequence of subsets of δ with δ =

⋃

α Xα.
Then Pδ = limdirαPXα . Furthermore,

(i) ωω ∩ V Pδ =
⋃

α(ωω ∩ V PXα )

(ii) ωω ∩ (V PXα+1 \ V PXα ) 6= ∅ for α < ω1

and the following lemma:
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First application: b versus g 3

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models Vα, α < κ, such that

(i) ωω ∩ V =
⋃

α<κ(ωω ∩ Vα)

(ii) ωω ∩ (Vα+1 \ Vα) 6= ∅ for all α < κ.

Then g ≤ κ.
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First application: b versus g 3

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models Vα, α < κ, such that

(i) ωω ∩ V =
⋃

α<κ(ωω ∩ Vα)

(ii) ωω ∩ (Vα+1 \ Vα) 6= ∅ for all α < κ.

Then g ≤ κ.

Proof: Let

Dα = {X ∈ [ω]ω : X has no almost subset in Vα}

(i): intersection of Dα is empty.
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First application: b versus g 3

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models Vα, α < κ, such that

(i) ωω ∩ V =
⋃

α<κ(ωω ∩ Vα)

(ii) ωω ∩ (Vα+1 \ Vα) 6= ∅ for all α < κ.

Then g ≤ κ.

Proof: Let

Dα = {X ∈ [ω]ω : X has no almost subset in Vα}

(i): intersection of Dα is empty.
Check the Dα are groupwise dense.
Obviously, they are open.
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First application: b versus g 4

Let I = (In : n ∈ ω) be a partition of ω into intervals.
(i): there is β ≥ α such that I ∈ Vβ .
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First application: b versus g 4

Let I = (In : n ∈ ω) be a partition of ω into intervals.
(i): there is β ≥ α such that I ∈ Vβ .
Let A ∈ Vβ be a mad family which contains a perfect a.d. family
B.
(ii): B has new branch A in Vβ+1.
A almost disjoint from A. Let C =

⋃

n∈A In.

Claim: C ∈ Dβ and thus C ∈ Dα as well.
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First application: b versus g 4

Let I = (In : n ∈ ω) be a partition of ω into intervals.
(i): there is β ≥ α such that I ∈ Vβ .
Let A ∈ Vβ be a mad family which contains a perfect a.d. family
B.
(ii): B has new branch A in Vβ+1.
A almost disjoint from A. Let C =

⋃

n∈A In.

Claim: C ∈ Dβ and thus C ∈ Dα as well.

Suppose C has an almost subset D ∈ Vβ .
Let E = {n : In ∩ D 6= ∅}.
Clearly E ⊆∗ A so that E is almost disjoint from A.
On the other hand, E belongs to Vβ because both D and I do.
This contradicts the maximality of A. �
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Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then the ground model reals form a splitting family in the
Pλ-extension.
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Iteration of definable forcing
Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then the ground model reals form a splitting family in the
Pλ-extension.

Corollary (Judah-Shelah)

s < b is consistent. Even add(N ) < b is consistent.
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Suslin ccc forcing
Iteration of definable forcing
Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then the ground model reals form a splitting family in the
Pλ-extension.

Corollary (Judah-Shelah)

s < b is consistent. Even add(N ) < b is consistent.

Proof: Use again iteration of D (Hechler) or A (amoeba). �
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Suslin ccc forcing
Iteration of definable forcing
Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let Pλ be an fsi of Suslin ccc
forcing.
Then the ground model reals form a splitting family in the
Pλ-extension.

Corollary (Judah-Shelah)

s < b is consistent. Even add(N ) < b is consistent.

Proof: Use again iteration of D (Hechler) or A (amoeba). �

Remark: CON(s < b) was first shown by Baumgartner-Dordal
using the same model but a different argument.
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1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Absoluteness for non-definable forcing?

We investigate the problem to which extent the embeddability
results and iteration techniques of lecture 1 can be generalized to
the non-definable context.
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Absoluteness for non-definable forcing?

We investigate the problem to which extent the embeddability
results and iteration techniques of lecture 1 can be generalized to
the non-definable context.

Since absoluteness of maximal antichains usually fails badly for
non-ccc p.o.’s, we stay in the realm of ccc forcing.
Relatively simple non-definable ccc forcing notions can be
associated naturally with ultrafilters on ω.
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Mathias forcing

Let F be a filter on ω.
Mathias forcing with F , MF :

Conditions: pairs (s, A) such that s ∈ [ω]<ω, A ∈ F , and
max s < minA

Order: (t, B) ≤ (s, A) if t ⊇ s, t \ s ⊆ A, and B ⊆ A
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Mathias forcing

Let F be a filter on ω.
Mathias forcing with F , MF :

Conditions: pairs (s, A) such that s ∈ [ω]<ω, A ∈ F , and
max s < minA

Order: (t, B) ≤ (s, A) if t ⊇ s, t \ s ⊆ A, and B ⊆ A

Properties:

σ-centered
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Mathias forcing

Let F be a filter on ω.
Mathias forcing with F , MF :

Conditions: pairs (s, A) such that s ∈ [ω]<ω, A ∈ F , and
max s < minA

Order: (t, B) ≤ (s, A) if t ⊇ s, t \ s ⊆ A, and B ⊆ A

Properties:

σ-centered

adds a generic Mathias real

m =
⋃

{s : there is A ∈ F such that (s, A) ∈ G}
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Mathias forcing

Let F be a filter on ω.
Mathias forcing with F , MF :

Conditions: pairs (s, A) such that s ∈ [ω]<ω, A ∈ F , and
max s < minA

Order: (t, B) ≤ (s, A) if t ⊇ s, t \ s ⊆ A, and B ⊆ A

Properties:

σ-centered

adds a generic Mathias real

m =
⋃

{s : there is A ∈ F such that (s, A) ∈ G}

m is a pseudointersection of the filter F
(m ⊆∗ A for all A ∈ F)
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Laver forcing

Laver forcing with F , LF :

Conditions: trees T ⊆ ω<ω such that:
for all s ∈ T with stem(T ) ⊆ s,
succT (s) = {n : s n̂ ∈ T} ∈ F .

Order: inclusion
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Laver forcing

Laver forcing with F , LF :

Conditions: trees T ⊆ ω<ω such that:
for all s ∈ T with stem(T ) ⊆ s,
succT (s) = {n : s n̂ ∈ T} ∈ F .

Order: inclusion

Properties:

σ-centered
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Laver forcing

Laver forcing with F , LF :

Conditions: trees T ⊆ ω<ω such that:
for all s ∈ T with stem(T ) ⊆ s,
succT (s) = {n : s n̂ ∈ T} ∈ F .

Order: inclusion

Properties:

σ-centered

adds a generic Laver real

ℓ =
⋃

{stem(T ) : T ∈ G}
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Laver forcing

Laver forcing with F , LF :

Conditions: trees T ⊆ ω<ω such that:
for all s ∈ T with stem(T ) ⊆ s,
succT (s) = {n : s n̂ ∈ T} ∈ F .

Order: inclusion

Properties:

σ-centered

adds a generic Laver real

ℓ =
⋃

{stem(T ) : T ∈ G}

ℓ is a dominating real
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Laver forcing

Laver forcing with F , LF :

Conditions: trees T ⊆ ω<ω such that:
for all s ∈ T with stem(T ) ⊆ s,
succT (s) = {n : s n̂ ∈ T} ∈ F .

Order: inclusion

Properties:

σ-centered

adds a generic Laver real

ℓ =
⋃

{stem(T ) : T ∈ G}

ℓ is a dominating real

ran(ℓ) is a pseudointersection of F
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Absoluteness for Mathias or Laver forcing?

Assume we have models M ⊆ N, and filters F ∈ M and G ∈ N
extending F .
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Absoluteness for Mathias or Laver forcing?

Assume we have models M ⊆ N, and filters F ∈ M and G ∈ N
extending F .

Under which circumstances is every maximal antichain A ⊆ MF in
M still a maximal antichain of MG is N? What about LF and LG?
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Absoluteness for Mathias or Laver forcing?

Assume we have models M ⊆ N, and filters F ∈ M and G ∈ N
extending F .

Under which circumstances is every maximal antichain A ⊆ MF in
M still a maximal antichain of MG is N? What about LF and LG?
This is trivially true if G = F , but the situation we are interested in
is when G properly extends F .

The answer is easier for Laver forcing:
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Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)

The following are equivalent:

(i) every F-positive set in M is still G-positive in N

(ii) every maximal antichain of LF in M is still a maximal
antichain of LG in N
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Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)

The following are equivalent:

(i) every F-positive set in M is still G-positive in N

(ii) every maximal antichain of LF in M is still a maximal
antichain of LG in N

Proof: Backwards direction: easy!
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Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)

The following are equivalent:

(i) every F-positive set in M is still G-positive in N

(ii) every maximal antichain of LF in M is still a maximal
antichain of LG in N

Proof: Backwards direction: easy!
Assume X ∈ M is F-positive, but ω \ X ∈ G. Then:

D = {T ∈ LF : stem(T )(|stem(T )| − 1) ∈ X}

dense in LF .
Yet: S = (ω \X )<ω ∈ LG is incompatible with every element of D.
Thus no maximal antichain A ⊆ D of M survives.
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
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Matrix iterations
Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .

rank(s) = α if
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .

rank(s) = α if

there is no β < α with rank(s) = β, and
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .

rank(s) = α if

there is no β < α with rank(s) = β, and
{n : rank(s n̂) < α} is F-positive.
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .
rank(s) = α if

there is no β < α with rank(s) = β, and
{n : rank(s n̂) < α} is F-positive.

Claim: for every s ∈ ω<ω, rank(s) defined (thus < ω1).

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .
rank(s) = α if

there is no β < α with rank(s) = β, and
{n : rank(s n̂) < α} is F-positive.

Claim: for every s ∈ ω<ω, rank(s) defined (thus < ω1).
Suppose rank(s) undefined for some s.
Then {n : rank(s n̂) is undefined} ∈ F .
Recursively build tree S ∈ LF such that stem(S) = s and for all
t ⊇ s in S , rank(t) is undefined.
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Absoluteness for Laver forcing 2

Forwards direction: rank argument!
Let A ∈ M be a maximal antichain in LF . By recursion on
α < ω1, define in M when rank(s) = α for s ∈ ω<ω.

rank(s) = 0 if ∃T ∈ A such that stem(T ) ⊆ s ∈ T .
rank(s) = α if

there is no β < α with rank(s) = β, and
{n : rank(s n̂) < α} is F-positive.

Claim: for every s ∈ ω<ω, rank(s) defined (thus < ω1).
Suppose rank(s) undefined for some s.
Then {n : rank(s n̂) is undefined} ∈ F .
Recursively build tree S ∈ LF such that stem(S) = s and for all
t ⊇ s in S , rank(t) is undefined.
Let T ∈ A be compatible with S with common extension U.
Then: stem(T ) ⊆ stem(U) ∈ U ⊆ T so that rank(stem(U)) = 0.
Also: stem(S) ⊆ stem(U) ∈ U ⊆ S so that rank(stem(U)) undef.
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Absoluteness for Laver forcing 3

Let S ∈ N be a condition in LG . Put s = stem(S).

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Absoluteness for Laver forcing 3

Let S ∈ N be a condition in LG . Put s = stem(S).
By induction on rank(s), show there is T ∈ A compatible with S .
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Absoluteness for Laver forcing 3

Let S ∈ N be a condition in LG . Put s = stem(S).
By induction on rank(s), show there is T ∈ A compatible with S .

rank(s) = 0: there is T ∈ A such that stem(T ) ⊆ s ∈ T .
Compatibility: straightforward.
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Absoluteness for Laver forcing 3

Let S ∈ N be a condition in LG . Put s = stem(S).
By induction on rank(s), show there is T ∈ A compatible with S .

rank(s) = 0: there is T ∈ A such that stem(T ) ⊆ s ∈ T .
Compatibility: straightforward.

rank(s) > 0: Consider {n : rank(s n̂) < rank(s)}.
This set is F-positive and, by assumption, still G-positive.
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Absoluteness for Laver forcing 3

Let S ∈ N be a condition in LG . Put s = stem(S).
By induction on rank(s), show there is T ∈ A compatible with S .

rank(s) = 0: there is T ∈ A such that stem(T ) ⊆ s ∈ T .
Compatibility: straightforward.

rank(s) > 0: Consider {n : rank(s n̂) < rank(s)}.
This set is F-positive and, by assumption, still G-positive.
Hence there is n ∈ succS(s) with rank(s n̂) < rank(s).
Consider Ss n̂ = {t ∈ S : t ⊆ s or s n̂ ⊆ t}.
This is a subtree of S with stem s n̂.
By induction hypothesis, there is T ∈ A compatible with Ss n̂.
But then T is also compatible with S . �
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Absoluteness for Laver and Mathias forcing

Corollary (Shelah)

Let U be an ultrafilter in M and let V be an ultrafilter in N
extending U . Then every maximal antichain of LU in M is still a
maximal antichain of LV in N.
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Absoluteness for Laver and Mathias forcing

Corollary (Shelah)

Let U be an ultrafilter in M and let V be an ultrafilter in N
extending U . Then every maximal antichain of LU in M is still a
maximal antichain of LV in N.

Even this special case fails for Mathias forcing:

Example

Assume U ∈ M is not Ramsey, and assume there is a Cohen real in
N over M. Then there are an ultrafilter V ⊇ U in N and a
maximal antichain A ⊆ MU in M which is not maximal in MV .
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Absoluteness for Mathias forcing

On the other hand, given an arbitrary U , we can always find V
such that maximal antichains are preserved:
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Absoluteness for Mathias forcing

On the other hand, given an arbitrary U , we can always find V
such that maximal antichains are preserved:

Lemma (Blass-Shelah)

Let U be an ultrafilter in M.
Also assume there is c ∈ ωω ∩ N unbounded over M.
Then there is an ultrafilter V ⊇ U in N such that:

(i) every maximal antichain of MU in M is still a maximal
antichain of MV in N

(ii) c is unbounded over MMU in NMV .
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1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Complete embeddability

Using these absoluteness results

we obtain complete embeddability

we build long iterations which can be realized as direct limits
of “short iterations”

as in lecture 1.
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Complete embeddability

Using these absoluteness results

we obtain complete embeddability
we build long iterations which can be realized as direct limits
of “short iterations”

as in lecture 1. Recall from lecture 1:

Lemma (preservation of embeddability in iterations)

Let P0<◦ P1 be p.o.’s. Let Q̇i be Pi -names for p.o.’s such that
P1 
 Q̇0 ⊆ Q̇1 and all maximal antichains of Q̇0 in V P0 are
maximal antichains of Q̇1 in V P1 .
Then P0 ⋆ Q̇0<◦ P1 ⋆ Q̇1.

In our context, this means:
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Complete embeddability

Using these absoluteness results

we obtain complete embeddability

we build long iterations which can be realized as direct limits
of “short iterations”

as in lecture 1.

Lemma (preservation of embeddability in iterations)

Let P0<◦ P1 be p.o.’s. Let Ḟi be Pi -names for filters such that
P1 
 Ḟ0 ⊆ Ḟ1 and all maximal antichains of X

Ḟ0
in V P0 are

maximal antichains of X
Ḟ1

in V P1 where X = L, M.

Then P0 ⋆ Ẋ
Ḟ0

<◦ P1 ⋆ Ẋ
Ḟ1

.
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Matrices: the first step 1

Let µ < λ be uncountable regular cardinals.
Assume (Pγ

0 : γ ≤ µ) is a ccc iteration such that
P

µ
0 = limdirγ<µP

γ
0 .
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Matrices: the first step 1

Let µ < λ be uncountable regular cardinals.
Assume (Pγ

0 : γ ≤ µ) is a ccc iteration such that
P

µ
0 = limdirγ<µP

γ
0 .

By recursion on γ choose P
γ
0 -names for filters Ḟγ

0 such that

Pδ
0 
 Ḟγ

0 ⊆ Ḟδ
0 for γ < δ

all maximal antichains of X
Ḟ

γ
0

in V P
γ
0 are maximal antichains

of X
Ḟδ

0
in V Pδ

0 where X = L, M
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Matrices: the first step 1

Let µ < λ be uncountable regular cardinals.
Assume (Pγ

0 : γ ≤ µ) is a ccc iteration such that
P

µ
0 = limdirγ<µP

γ
0 .

By recursion on γ choose P
γ
0 -names for filters Ḟγ

0 such that

Pδ
0 
 Ḟγ

0 ⊆ Ḟδ
0 for γ < δ

all maximal antichains of X
Ḟ

γ
0

in V P
γ
0 are maximal antichains

of X
Ḟδ

0
in V Pδ

0 where X = L, M

Then let P
γ
1 = P

γ
0 ⋆ X

Ḟ
γ
1
.
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Matrices: the first step 2

Properties:

if x is X
Ḟδ

0
-generic over V Pδ

0 , then it is also X
Ḟ

γ
0
-generic over

V P
γ
0 for γ < δ

(by preservation of maximal antichains)
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Matrices: the first step 2

Properties:

if x is X
Ḟδ

0
-generic over V Pδ

0 , then it is also X
Ḟ

γ
0
-generic over

V P
γ
0 for γ < δ

(by preservation of maximal antichains)

P
γ
1<◦ Pδ

1 for γ < δ
(by preservation of embeddability)
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Properties:

if x is X
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-generic over V Pδ

0 , then it is also X
Ḟ

γ
0
-generic over

V P
γ
0 for γ < δ

(by preservation of maximal antichains)

P
γ
1<◦ Pδ

1 for γ < δ
(by preservation of embeddability)

P
µ
1 = limdirγ<µP

γ
1
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Matrices: the first step 2

Properties:

if x is X
Ḟδ

0
-generic over V Pδ

0 , then it is also X
Ḟ

γ
0
-generic over

V P
γ
0 for γ < δ

(by preservation of maximal antichains)

P
γ
1<◦ Pδ

1 for γ < δ
(by preservation of embeddability)

P
µ
1 = limdirγ<µP

γ
1

V µ
1 ∩ ωω =

⋃

γ<µ V γ
1 ∩ ωω
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Matrices: the first step 2

Properties:

if x is X
Ḟδ

0
-generic over V Pδ

0 , then it is also X
Ḟ

γ
0
-generic over

V P
γ
0 for γ < δ

(by preservation of maximal antichains)

P
γ
1<◦ Pδ

1 for γ < δ
(by preservation of embeddability)

P
µ
1 = limdirγ<µP

γ
1

V µ
1 ∩ ωω =

⋃

γ<µ V γ
1 ∩ ωω

In particular, (Pγ
1 : γ ≤ µ) is a ccc iteration such that

P
µ
1 = limdirγ<µP

γ
1 .

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω

(iv) if β = α + 1 is a successor, we have P
γ
α-names for filters Ḟγ

α

such that
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω

(iv) if β = α + 1 is a successor, we have P
γ
α-names for filters Ḟγ

α

such that

Pδ
α 
 Ḟγ

α ⊆ Ḟδ
α for γ < δ
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω

(iv) if β = α + 1 is a successor, we have P
γ
α-names for filters Ḟγ

α

such that

Pδ
α 
 Ḟγ

α ⊆ Ḟδ
α for γ < δ

all maximal antichains of X
Ḟ

γ
α

in V Pγ
α are maximal antichains

of X
Ḟδ

α
in V Pδ

α where X = L, M
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω

(iv) if β = α + 1 is a successor, we have P
γ
α-names for filters Ḟγ

α

such that

Pδ
α 
 Ḟγ

α ⊆ Ḟδ
α for γ < δ

all maximal antichains of X
Ḟ

γ
α

in V Pγ
α are maximal antichains

of X
Ḟδ

α
in V Pδ

α where X = L, M

and we put P
γ
β = P

γ
α ⋆ X

Ḟ
γ
α
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω

(iv) if β = α + 1 is a successor, we have P
γ
α-names for filters Ḟγ

α

such that

Pδ
α 
 Ḟγ

α ⊆ Ḟδ
α for γ < δ

all maximal antichains of X
Ḟ

γ
α

in V Pγ
α are maximal antichains

of X
Ḟδ

α
in V Pδ

α where X = L, M

and we put P
γ
β = P

γ
α ⋆ X

Ḟ
γ
α

Successor step β = α + 1: like β = 1 of previous slide.
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Matrices: the general case

More generally, by recursion on α < λ, build finite support
iterations (Pγ

α : α ≤ λ), γ ≤ µ, such that

(i) P
γ
α<◦ Pδ

α for γ < δ

(ii) P
µ
α = limdirγ<µP

γ
α

(iii) V µ
α ∩ ωω =

⋃

γ<µ V γ
α ∩ ωω

(iv) if β = α + 1 is a successor, we have P
γ
α-names for filters Ḟγ

α

such that

Pδ
α 
 Ḟγ

α ⊆ Ḟδ
α for γ < δ

all maximal antichains of X
Ḟ

γ
α

in V Pγ
α are maximal antichains

of X
Ḟδ

α
in V Pδ

α where X = L, M

and we put P
γ
β = P

γ
α ⋆ X

Ḟ
γ
α

Successor step β = α + 1: like β = 1 of previous slide.
Limit step: (i), (ii), (iii): exercise!
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Matrices: a diagram

P0
0

P1
0

P2
0

P
γ
0

P
µ
0
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P0
0

P1
0

P2
0

P
γ
0

P
µ
0

P0
1

P1
1

P2
1

P
γ
1

P
µ
1
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Matrices: a diagram

P0
0

P1
0

P2
0

P
γ
0

P
µ
0

P0
1

P1
1

P2
1

P
γ
1

P
µ
1

P0
2

P1
2

P2
2

P
γ
2

P
µ
2
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Matrices: a diagram

P0
0

P1
0

P2
0

P
γ
0

P
µ
0

P0
1

P1
1

P2
1

P
γ
1

P
µ
1

P0
2

P1
2

P2
2

P
γ
2

P
µ
2

P0
α

P1
α

P2
α

P
γ
α

P
µ
α
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Matrices: a diagram

P0
0

P1
0

P2
0

P
γ
0

P
µ
0

P0
1

P1
1

P2
1

P
γ
1

P
µ
1

P0
2

P1
2

P2
2

P
γ
2

P
µ
2

P0
α

P1
α

P2
α

P
γ
α

P
µ
α

P0
λ

P1
λ

P2
λ

P
γ
λ

P
µ
λ
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1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Dense sets of rationals

Let Q denote the rationals.
Dense(Q): dense subsets of rationals.
nwd: nowhere dense sets of rationals
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Dense sets of rationals

Let Q denote the rationals.
Dense(Q): dense subsets of rationals.
nwd: nowhere dense sets of rationals

For A, B ∈ Dense(Q):

A ⊆nwd B (A is contained in B mod nwd) ⇐⇒ A \ B ∈ nwd
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Dense sets of rationals

Let Q denote the rationals.
Dense(Q): dense subsets of rationals.
nwd: nowhere dense sets of rationals

For A, B ∈ Dense(Q):

A ⊆nwd B (A is contained in B mod nwd) ⇐⇒ A \ B ∈ nwd

Consider the quotient Dense(Q)/nwd ordered by
[A] ≤ [B] iff A ⊆nwd B.
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Cardinal invariants for Dense(Q)/nwd 1

For A, B ∈ Dense(Q):

A Q-splits B ⇐⇒ A ∩ B and B \ A both dense
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Cardinal invariants for Dense(Q)/nwd 1

For A, B ∈ Dense(Q):

A Q-splits B ⇐⇒ A ∩ B and B \ A both dense

F ⊆ Dense(Q) is Q-splitting if every member of Dense(Q) is
Q-split by a member of F .
F ⊆ Dense(Q) is Q-unsplit (or Q-unreaped) if no member of
Dense(Q) Q-splits all members of F , i.e.
∀A ∈ Dense(Q) ∃B ∈ F (A ∩ B not dense or B \ A not dense).
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Cardinal invariants for Dense(Q)/nwd 1

For A, B ∈ Dense(Q):

A Q-splits B ⇐⇒ A ∩ B and B \ A both dense

F ⊆ Dense(Q) is Q-splitting if every member of Dense(Q) is
Q-split by a member of F .
F ⊆ Dense(Q) is Q-unsplit (or Q-unreaped) if no member of
Dense(Q) Q-splits all members of F , i.e.
∀A ∈ Dense(Q) ∃B ∈ F (A ∩ B not dense or B \ A not dense).

sQ := min{|F| : F is Q-splitting}, the Q-splitting number.
rQ := min{|F| : F is Q-unsplit}, the Q-reaping number.
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Cardinal invariants for Dense(Q)/nwd 2

D ⊆ Dense(Q) Q-dense: ∀A ∈ Dense(Q) ∃B ∈ D (B ⊆nwd A)
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Cardinal invariants for Dense(Q)/nwd 2

D ⊆ Dense(Q) Q-dense: ∀A ∈ Dense(Q) ∃B ∈ D (B ⊆nwd A)

hQ := min{|D| : all D ∈ D open Q-dense and
⋂

D = ∅}
the Q-distributivity number.
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Cardinal invariants for Dense(Q)/nwd 2

D ⊆ Dense(Q) Q-dense: ∀A ∈ Dense(Q) ∃B ∈ D (B ⊆nwd A)

hQ := min{|D| : all D ∈ D open Q-dense and
⋂

D = ∅}
the Q-distributivity number.

Let M be the meager ideal.

Theorem

(i) sQ ≤ min{s, add(M)} ≤ min{s, b} and dually
max{r, d} ≤ max{r, cof(M)} ≤ rQ

(ii) hQ ≤ sQ
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ZFC-inequalities: another diagram

ℵ1

hQ

sQ

bs

d r

rQ

c

��@@

HHHH

@@��
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First application: hQ versus sQ 1

Theorem (B.)

Let λ = λω be regular uncountable. It is consistent that
sQ = c = λ and hQ = ℵ1.
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First application: hQ versus sQ 1

Theorem (B.)

Let λ = λω be regular uncountable. It is consistent that
sQ = c = λ and hQ = ℵ1.

Proof: F ⊆ Dense(Q) is a maximal Q-filter if F is a filter in
Dense(Q) which cannot be extended to a strictly larger filter in
Dense(Q).
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First application: hQ versus sQ 1

Theorem (B.)

Let λ = λω be regular uncountable. It is consistent that
sQ = c = λ and hQ = ℵ1.

Proof: F ⊆ Dense(Q) is a maximal Q-filter if F is a filter in
Dense(Q) which cannot be extended to a strictly larger filter in
Dense(Q).

Fact: If N ⊆ M, F is a maximal Q-filter in M and G is a maximal
Q-filter in N extending F , then every F-positive set of M is
G-positive in N.

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing.

Lemma (preservation of maximal antichains)

The following are equivalent:

(i) every F-positive set in M is still G-positive in N

(ii) every maximal antichain of LF in M is still a maximal
antichain of LG in N
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:

(i) P
γ
0 = Cγ adds γ Cohen reals
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:

(i) P
γ
0 = Cγ adds γ Cohen reals

(ii) P
γ
α<◦ Pδ

α for γ < δ
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:

(i) P
γ
0 = Cγ adds γ Cohen reals

(ii) P
γ
α<◦ Pδ

α for γ < δ

(iii) Pℵ1
α = limdirγ<ℵ1P

γ
α
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:

(i) P
γ
0 = Cγ adds γ Cohen reals

(ii) P
γ
α<◦ Pδ

α for γ < δ

(iii) Pℵ1
α = limdirγ<ℵ1P

γ
α

(iv) V ℵ1
α ∩ ωω =

⋃

γ<ℵ1
(V γ

α ∩ ωω) and ωω ∩ (V δ
α \ V γ

α ) 6= ∅ for
γ < δ
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:

(i) P
γ
0 = Cγ adds γ Cohen reals

(ii) P
γ
α<◦ Pδ

α for γ < δ

(iii) Pℵ1
α = limdirγ<ℵ1P

γ
α

(iv) V ℵ1
α ∩ ωω =

⋃

γ<ℵ1
(V γ

α ∩ ωω) and ωω ∩ (V δ
α \ V γ

α ) 6= ∅ for
γ < δ

(v) if β = α + 1 is a successor, we have P
γ
α-names for maximal

Q-filters Ḟγ
α such that

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
Matrix iterations
Applications

First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ
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forcing. This allows us to build a matrix iteration with µ = ℵ1,
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(v) if β = α + 1 is a successor, we have P
γ
α-names for maximal

Q-filters Ḟγ
α such that



δ
α Ḟγ

α ⊆ Ḟδ
α for γ < δ

all maximal antichains of L
Ḟ

γ
α

in V Pγ
α are maximal antichains

of L
Ḟδ

α
in V Pδ
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First application: hQ versus sQ 2

So we may apply preservation of maximal antichains for Laver
forcing. This allows us to build a matrix iteration with µ = ℵ1,
X = L and the Ḟγ

α being maximal Q-filters:

(i) P
γ
0 = Cγ adds γ Cohen reals

(ii) P
γ
α<◦ Pδ

α for γ < δ

(iii) Pℵ1
α = limdirγ<ℵ1P

γ
α

(iv) V ℵ1
α ∩ ωω =
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(V γ

α ∩ ωω) and ωω ∩ (V δ
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α ) 6= ∅ for
γ < δ

(v) if β = α + 1 is a successor, we have P
γ
α-names for maximal

Q-filters Ḟγ
α such that



δ
α Ḟγ

α ⊆ Ḟδ
α for γ < δ

all maximal antichains of L
Ḟ

γ
α

in V Pγ
α are maximal antichains

of L
Ḟδ

α
in V Pδ

α

and we put P
γ
β = P

γ
α ⋆ L

Ḟ
γ
α
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First application: hQ versus sQ 3

Fact: Let F be a maximal Q-filter.
If ℓ is LF -generic over V , ran(ℓ) is not Q-split by any ground
model dense set.
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First application: hQ versus sQ 3

Fact: Let F be a maximal Q-filter.
If ℓ is LF -generic over V , ran(ℓ) is not Q-split by any ground
model dense set.

Since we iterate λ times, sQ = c = λ.

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Extending ultrafilters
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First application: hQ versus sQ 3

Fact: Let F be a maximal Q-filter.
If ℓ is LF -generic over V , ran(ℓ) is not Q-split by any ground
model dense set.

Since we iterate λ times, sQ = c = λ.

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models Vα, α < κ, such that

(i) ωω ∩ V =
⋃

α<κ(ωω ∩ Vα)

(ii) ωω ∩ (Vα+1 \ Vα) 6= ∅ for all α < κ.

Then hQ ≤ κ.
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First application: hQ versus sQ 3

Fact: Let F be a maximal Q-filter.
If ℓ is LF -generic over V , ran(ℓ) is not Q-split by any ground
model dense set.

Since we iterate λ times, sQ = c = λ.

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing
chain of ZFC-models Vα, α < κ, such that

(i) ωω ∩ V =
⋃

α<κ(ωω ∩ Vα)

(ii) ωω ∩ (Vα+1 \ Vα) 6= ∅ for all α < κ.

Then hQ ≤ κ.

By (iv): true with κ = ℵ1, V = V ℵ1
λ and Vα = V α

λ .
Hence: hQ = ℵ1. �
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Second application: b versus s

Theorem (Blass-Shelah)

Let λ = λω be regular uncountable. It is consistent that s = c = λ
and b = ℵ1.
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Second application: b versus s

Theorem (Blass-Shelah)

Let λ = λω be regular uncountable. It is consistent that s = c = λ
and b = ℵ1.

Use a matrix iteration with µ = ℵ1, X = M and the U̇γ
α being

ultrafilters. Recall:

Lemma (Blass-Shelah)

Let U be an ultrafilter in M.
Also assume there is c ∈ ωω ∩ N unbounded over M.
Then there is an ultrafilter V ⊇ U in N such that:

(i) every maximal antichain of MU in M is still a maximal
antichain of MV in N

(ii) c is unbounded over MMU in NMV .
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1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Ultrapowers of p.o.’s

κ: measurable cardinal
D: κ-complete ultrafilter on κ
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Ultrapowers of p.o.’s

κ: measurable cardinal
D: κ-complete ultrafilter on κ
Let P be a p.o. and consider the ultrapower

Pκ/D = {[f ] : f : κ → P}

where [f ] = {g ∈ Pκ : {α < κ : f (α) = g(α)} ∈ D} is the
equivalence class of f .
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Ultrapowers of p.o.’s

κ: measurable cardinal
D: κ-complete ultrafilter on κ
Let P be a p.o. and consider the ultrapower

Pκ/D = {[f ] : f : κ → P}

where [f ] = {g ∈ Pκ : {α < κ : f (α) = g(α)} ∈ D} is the
equivalence class of f .
Pκ/D is ordered by

[g ] ≤ [f ] if {α < κ : g(α) ≤ f (α)} ∈ D

Identifying p ∈ P with the class [f ] of the constant function
f (α) = p for all α, we may assume P ⊆ Pκ/D.
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Complete embeddability

Lemma (Complete embeddability)

Let A ⊆ P be a maximal antichain.
Then A is maximal in Pκ/D iff |A| < κ.
In particular, P<◦ Pκ/D iff P has the κ-cc.
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Complete embeddability

Lemma (Complete embeddability)

Let A ⊆ P be a maximal antichain.
Then A is maximal in Pκ/D iff |A| < κ.
In particular, P<◦ Pκ/D iff P has the κ-cc.

Proof: A: an antichain of P of size at least κ.
f : any injection from κ into A.
Then: [f ] is incompatible with all members of A.
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Complete embeddability

Lemma (Complete embeddability)

Let A ⊆ P be a maximal antichain.
Then A is maximal in Pκ/D iff |A| < κ.
In particular, P<◦ Pκ/D iff P has the κ-cc.

Proof: A: an antichain of P of size at least κ.
f : any injection from κ into A.
Then: [f ] is incompatible with all members of A.

Let A be an antichain of P of size < κ.
Assume [f ] ∈ Pκ/D is incompatible with all members of A.
For p ∈ A: Xp := {α : f (α) and p are incompatible} ∈ D.
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Complete embeddability

Lemma (Complete embeddability)

Let A ⊆ P be a maximal antichain.
Then A is maximal in Pκ/D iff |A| < κ.
In particular, P<◦ Pκ/D iff P has the κ-cc.

Proof: A: an antichain of P of size at least κ.
f : any injection from κ into A.
Then: [f ] is incompatible with all members of A.

Let A be an antichain of P of size < κ.
Assume [f ] ∈ Pκ/D is incompatible with all members of A.
For p ∈ A: Xp := {α : f (α) and p are incompatible} ∈ D.
κ-completeness: X :=

⋂

p∈A Xp ∈ D.
If α ∈ X : f (α) is incompatible with all p ∈ A. �
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Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume P has the λ-cc for some λ < κ.
Then Pκ/D has the λ-cc as well.
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Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume P has the λ-cc for some λ < κ.
Then Pκ/D has the λ-cc as well.

Proof: Assume [fγ ], γ < λ, pairwise incompatible in Pκ/D.
For γ, δ < λ: Yγ,δ := {α : fγ(α) and fδ(α) are incompatible} ∈ D.

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume P has the λ-cc for some λ < κ.
Then Pκ/D has the λ-cc as well.

Proof: Assume [fγ ], γ < λ, pairwise incompatible in Pκ/D.
For γ, δ < λ: Yγ,δ := {α : fγ(α) and fδ(α) are incompatible} ∈ D.
κ-completeness: Y :=

⋂

γ,δ Yγ,δ ∈ D.
If α ∈ Y : fγ(α), γ < λ, is an antichain in P.
Contradiction to the λ-cc. �
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Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume P has the λ-cc for some λ < κ.
Then Pκ/D has the λ-cc as well.

Proof: Assume [fγ ], γ < λ, pairwise incompatible in Pκ/D.
For γ, δ < λ: Yγ,δ := {α : fγ(α) and fδ(α) are incompatible} ∈ D.
κ-completeness: Y :=

⋂

γ,δ Yγ,δ ∈ D.
If α ∈ Y : fγ(α), γ < λ, is an antichain in P.
Contradiction to the λ-cc. �

Remark: If P has the κ-cc but not the λ-cc for any λ < κ, then
Pκ/D does not have the κ-cc.
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Antichains and names for reals 1

Assume P is ccc.
Since P completely embeds into Pκ/D, we may write

Pκ/D = P ⋆ Q̇.

What can we say about the remainder forcing Q̇?
E.g., what kind of reals can it add?
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Antichains and names for reals 1

Assume P is ccc.
Since P completely embeds into Pκ/D, we may write

Pκ/D = P ⋆ Q̇.

What can we say about the remainder forcing Q̇?
E.g., what kind of reals can it add?

Assume {[fn] : n ∈ ω} is a maximal antichain in Pκ/D.
Know: {α : {fn(α) : n ∈ ω} is a maximal antichain} ∈ D.
Thus, by changing the fn on a small set, we may as well assume
that for all α, the fn(α) form a maximal antichain in P.
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Antichains and names for reals 2

A P-name for a real ẋ is represented by sequences of maximal
antichains {pn,i : n ∈ ω} and of numbers {kn,i : n ∈ ω}, i ∈ ω,
such that

pn,i 
P ẋ(i) = kn,i
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Antichains and names for reals 2

A P-name for a real ẋ is represented by sequences of maximal
antichains {pn,i : n ∈ ω} and of numbers {kn,i : n ∈ ω}, i ∈ ω,
such that

pn,i 
P ẋ(i) = kn,i

Therefore: a Pκ/D-name ẏ for a real is represented by sequences
{[fn,i ] : n ∈ ω} and {kn,i : n ∈ ω}, i ∈ ω, such that the
{fn,i (α) : n ∈ ω}, i ∈ ω, form maximal antichains in P for all α and

[fn,i ] 
Pκ/D ẏ(i) = kn,i
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Antichains and names for reals 2

A P-name for a real ẋ is represented by sequences of maximal
antichains {pn,i : n ∈ ω} and of numbers {kn,i : n ∈ ω}, i ∈ ω,
such that

pn,i 
P ẋ(i) = kn,i

Therefore: a Pκ/D-name ẏ for a real is represented by sequences
{[fn,i ] : n ∈ ω} and {kn,i : n ∈ ω}, i ∈ ω, such that the
{fn,i (α) : n ∈ ω}, i ∈ ω, form maximal antichains in P for all α and

[fn,i ] 
Pκ/D ẏ(i) = kn,i

The {fn,i (α) : n ∈ ω} and {kn,i : n ∈ ω}, i ∈ ω, determine a
P-name ẏα for a real given by

fn,i (α) 
P ẏα(i) = kn,i
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Antichains and names for reals 2

A P-name for a real ẋ is represented by sequences of maximal
antichains {pn,i : n ∈ ω} and of numbers {kn,i : n ∈ ω}, i ∈ ω,
such that

pn,i 
P ẋ(i) = kn,i

Therefore: a Pκ/D-name ẏ for a real is represented by sequences
{[fn,i ] : n ∈ ω} and {kn,i : n ∈ ω}, i ∈ ω, such that the
{fn,i (α) : n ∈ ω}, i ∈ ω, form maximal antichains in P for all α and

[fn,i ] 
Pκ/D ẏ(i) = kn,i

The {fn,i (α) : n ∈ ω} and {kn,i : n ∈ ω}, i ∈ ω, determine a
P-name ẏα for a real given by

fn,i (α) 
P ẏα(i) = kn,i

Think of ẏ as the mean or average of the ẏα and write
ẏ = (ẏα : α < κ)/D.
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Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i) P 
 “b = d = κ iff Q̇ adds a dominating real”.

(ii) If P 
 b > κ or P 
 d < κ, then P 
 “Q̇ is ωω-bounding”.
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Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i) P 
 “b = d = κ iff Q̇ adds a dominating real”.

(ii) If P 
 b > κ or P 
 d < κ, then P 
 “Q̇ is ωω-bounding”.

Proof: (i) Assume p 
P “{ẋα : α < κ} is a scale”.
Put ẋ = (ẋα : α < κ)/D.
Clearly p 


P⋆Q̇
ẋ ≥∗ ẋα for all α.
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Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i) P 
 “b = d = κ iff Q̇ adds a dominating real”.

(ii) If P 
 b > κ or P 
 d < κ, then P 
 “Q̇ is ωω-bounding”.

Proof: (i) Assume p 
P “{ẋα : α < κ} is a scale”.
Put ẋ = (ẋα : α < κ)/D.
Clearly p 


P⋆Q̇
ẋ ≥∗ ẋα for all α.

Converse: exercise!
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Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i) P 
 “b = d = κ iff Q̇ adds a dominating real”.

(ii) If P 
 b > κ or P 
 d < κ, then P 
 “Q̇ is ωω-bounding”.

Proof: (i) Assume p 
P “{ẋα : α < κ} is a scale”.
Put ẋ = (ẋα : α < κ)/D.
Clearly p 


P⋆Q̇
ẋ ≥∗ ẋα for all α.

Converse: exercise!

(ii) Assume that p 
P b > κ.
Let ẏ = (ẏα : α < κ)/D be a Pκ/D-name for a real.
The ẏα are forced to be bounded, say, by ẋ .
But then p 


P⋆Q̇
ẏ ≤∗ ẋ .
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Ultrapowers and eventual dominance 2

Assume that for some µ < κ, p 
P d = µ.
Say: p 
P “{ẋα : α < µ} is dominating”.
Then: p 
P “{ẋα : α < µ} is dominating”. �
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Ultrapowers and eventual dominance 2

Assume that for some µ < κ, p 
P d = µ.
Say: p 
P “{ẋα : α < µ} is dominating”.
Then: p 
P “{ẋα : α < µ} is dominating”. �

Problem

Give an exact characterization of when Q̇ is forced to be
ωω-bounding.
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Ultrapowers and eventual dominance 2

Assume that for some µ < κ, p 
P d = µ.
Say: p 
P “{ẋα : α < µ} is dominating”.
Then: p 
P “{ẋα : α < µ} is dominating”. �

Problem

Give an exact characterization of when Q̇ is forced to be
ωω-bounding.

Main point: If µ > κ regular, and P forces b = d = µ, this is
preserved by taking ultrapowers.
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let µ > κ regular. Assume P 
 “Ȧγ , γ < µ, is ⊆∗-decreasing
and generates an ultrafilter”. Then Pκ/D 
 “Ȧγ , γ < µ, still
generates an ultrafilter”.

(ii) Assume P 
 “Ȧγ , γ < κ, satisfy Ȧγ 6⊆∗ Ȧδ for γ < δ”. Then
Pκ/D 
 “Ȧγ , γ < κ, does not generate an ultrafilter”.
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let µ > κ regular. Assume P 
 “Ȧγ , γ < µ, is ⊆∗-decreasing
and generates an ultrafilter”. Then Pκ/D 
 “Ȧγ , γ < µ, still
generates an ultrafilter”.

(ii) Assume P 
 “Ȧγ , γ < κ, satisfy Ȧγ 6⊆∗ Ȧδ for γ < δ”. Then
Pκ/D 
 “Ȧγ , γ < κ, does not generate an ultrafilter”.

Proof: (i) Ḃ = (Ḃα : α < κ)/D: Pκ/D-name for a subset of ω.
By ccc: for each α, find γ = γα such that

P 
 “Ȧγ ⊆∗ Ḃα or Ȧγ ⊆∗ ω \ Ḃα”. (⋆)
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let µ > κ regular. Assume P 
 “Ȧγ , γ < µ, is ⊆∗-decreasing
and generates an ultrafilter”. Then Pκ/D 
 “Ȧγ , γ < µ, still
generates an ultrafilter”.

(ii) Assume P 
 “Ȧγ , γ < κ, satisfy Ȧγ 6⊆∗ Ȧδ for γ < δ”. Then
Pκ/D 
 “Ȧγ , γ < κ, does not generate an ultrafilter”.

Proof: (i) Ḃ = (Ḃα : α < κ)/D: Pκ/D-name for a subset of ω.
By ccc: for each α, find γ = γα such that

P 
 “Ȧγ ⊆∗ Ḃα or Ȧγ ⊆∗ ω \ Ḃα”. (⋆)

Let γ = supαγα. Then (⋆) holds for all α. Hence:

Pκ/D 
 “Ȧγ ⊆∗ Ḃ or Ȧγ ⊆∗ ω \ Ḃ”.
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let µ > κ regular. Assume P 
 “Ȧγ , γ < µ, is ⊆∗-decreasing
and generates an ultrafilter”. Then Pκ/D 
 “Ȧγ , γ < µ, still
generates an ultrafilter”.

(ii) Assume P 
 “Ȧγ , γ < κ, satisfy Ȧγ 6⊆∗ Ȧδ for γ < δ”. Then
Pκ/D 
 “Ȧγ , γ < κ, does not generate an ultrafilter”.

Proof: (i) Ḃ = (Ḃα : α < κ)/D: Pκ/D-name for a subset of ω.
By ccc: for each α, find γ = γα such that

P 
 “Ȧγ ⊆∗ Ḃα or Ȧγ ⊆∗ ω \ Ḃα”. (⋆)

Let γ = supαγα. Then (⋆) holds for all α. Hence:

Pκ/D 
 “Ȧγ ⊆∗ Ḃ or Ȧγ ⊆∗ ω \ Ḃ”.

(ii) Exercise! (Consider Ȧ = (Ȧα : α < κ)/D.) �
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let µ > κ regular. Assume P 
 “Ȧγ , γ < µ, is ⊆∗-decreasing
and generates an ultrafilter”. Then Pκ/D 
 “Ȧγ , γ < µ, still
generates an ultrafilter”.

(ii) Assume P 
 “Ȧγ , γ < κ, satisfy Ȧγ 6⊆∗ Ȧδ for γ < δ”. Then
Pκ/D 
 “Ȧγ , γ < κ, does not generate an ultrafilter”.

Main points: (i) If µ > κ regular, and P forces an ultrafilter
generated by a decreasing chain of length µ, this is preserved by
taking ultrapowers.
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Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

(i) Let µ > κ regular. Assume P 
 “Ȧγ , γ < µ, is ⊆∗-decreasing
and generates an ultrafilter”. Then Pκ/D 
 “Ȧγ , γ < µ, still
generates an ultrafilter”.

(ii) Assume P 
 “Ȧγ , γ < κ, satisfy Ȧγ 6⊆∗ Ȧδ for γ < δ”. Then
Pκ/D 
 “Ȧγ , γ < κ, does not generate an ultrafilter”.

Main points: (i) If µ > κ regular, and P forces an ultrafilter
generated by a decreasing chain of length µ, this is preserved by
taking ultrapowers.
(ii) Taking ultrapowers kills ultrafilter bases of size κ.
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Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume P 
 “Ȧ is an a.d. family of size ≥ κ”.
Then Pκ/D 
 “Ȧ is not maximal”.
In particular, if P forces a ≥ κ, then no a.d. family of V P is
maximal in V Pκ/D.

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume P 
 “Ȧ is an a.d. family of size ≥ κ”.
Then Pκ/D 
 “Ȧ is not maximal”.
In particular, if P forces a ≥ κ, then no a.d. family of V P is
maximal in V Pκ/D.

Proof: Let µ ≥ κ. Let Ȧ = {Ȧγ : γ < µ} be a P-name for an a.d.
family. Consider Ȧ = (Ȧα : α < κ)/D.
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Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume P 
 “Ȧ is an a.d. family of size ≥ κ”.
Then Pκ/D 
 “Ȧ is not maximal”.
In particular, if P forces a ≥ κ, then no a.d. family of V P is
maximal in V Pκ/D.

Proof: Let µ ≥ κ. Let Ȧ = {Ȧγ : γ < µ} be a P-name for an a.d.
family. Consider Ȧ = (Ȧα : α < κ)/D.

Claim: Ȧ is forced to be a.d. from all members of Ȧ.
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Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume P 
 “Ȧ is an a.d. family of size ≥ κ”.
Then Pκ/D 
 “Ȧ is not maximal”.
In particular, if P forces a ≥ κ, then no a.d. family of V P is
maximal in V Pκ/D.

Proof: Let µ ≥ κ. Let Ȧ = {Ȧγ : γ < µ} be a P-name for an a.d.
family. Consider Ȧ = (Ȧα : α < κ)/D.

Claim: Ȧ is forced to be a.d. from all members of Ȧ.

Fix γ < µ. For α < κ with α 6= γ: 
P |Ȧγ ∩ Ȧα| < ω
Thus: {α < κ :
P |Ȧγ ∩ Ȧα| < ω} belongs to D.
Hence: 
Pκ/D |Ȧγ ∩ Ȧ| < ω. �
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Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume P 
 “Ȧ is an a.d. family of size ≥ κ”.
Then Pκ/D 
 “Ȧ is not maximal”.
In particular, if P forces a ≥ κ, then no a.d. family of V P is
maximal in V Pκ/D.

Main point: Taking ultrapowers kills mad families of size ≥ κ.
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Preservation of complete embeddability

We next look at ultrapowers of whole iterations.
The basic result says:
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Preservation of complete embeddability

We next look at ultrapowers of whole iterations.
The basic result says:

Lemma (Preservation of complete embeddability)

Assume P<◦ Q. Then Pκ/D<◦ Qκ/D.
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Preservation of complete embeddability

We next look at ultrapowers of whole iterations.
The basic result says:

Lemma (Preservation of complete embeddability)

Assume P<◦ Q. Then Pκ/D<◦ Qκ/D.

Proof: By elementarity:
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Preservation of complete embeddability

We next look at ultrapowers of whole iterations.
The basic result says:

Lemma (Preservation of complete embeddability)

Assume P<◦ Q. Then Pκ/D<◦ Qκ/D.

Proof: By elementarity:
Assume D predense in Pκ/D.
Then: {α < κ : {f (α) : [f ] ∈ D} predense in P} ∈ D.
Hence: {α < κ : {f (α) : [f ] ∈ D} predense in Q} ∈ D.
Thus: D predense in Qκ/D. �
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Ultrapowers of iterations

Assume (Pγ : γ ≤ µ) is an iteration.
Then: (Pκ

γ/D : γ ≤ µ) is again an iteration.
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Ultrapowers of iterations

Assume (Pγ : γ ≤ µ) is an iteration.
Then: (Pκ

γ/D : γ ≤ µ) is again an iteration.
Note that we make no requirements about limits.
In fact, “being a direct limit” is in general NOT preserved by
taking the ultrapower:
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Ultrapowers of iterations

Assume (Pγ : γ ≤ µ) is an iteration.
Then: (Pκ

γ/D : γ ≤ µ) is again an iteration.
Note that we make no requirements about limits.
In fact, “being a direct limit” is in general NOT preserved by
taking the ultrapower:

Lemma (Ultrapower of an iteration)

Assume Pµ = limdir(Pγ : γ < µ).
Then limdir(Pκ

γ/D : γ < µ)<◦ Pκ
µ/D.

Also Pκ
µ/D = limdir(Pκ

γ/D : γ < µ) iff cf (µ) 6= κ.
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Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume Pµ = limdir(Pγ : γ < µ).
Then limdir(Pκ

γ/D : γ < µ)<◦ Pκ
µ/D.

Also Pκ
µ/D = limdir(Pκ

γ/D : γ < µ) iff cf (µ) 6= κ.

Proof: Second statement: Let [f ] ∈ Pκ
µ/D.
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Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume Pµ = limdir(Pγ : γ < µ).
Then limdir(Pκ

γ/D : γ < µ)<◦ Pκ
µ/D.

Also Pκ
µ/D = limdir(Pκ

γ/D : γ < µ) iff cf (µ) 6= κ.

Proof: Second statement: Let [f ] ∈ Pκ
µ/D.

cf (µ) 6= κ: there is γ < µ such that {α : f (α) ∈ Pγ} ∈ D.
Hence: [f ] ∈ Pκ

γ/D.
Therefore: Pκ

µ/D is direct limit.
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Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume Pµ = limdir(Pγ : γ < µ).
Then limdir(Pκ

γ/D : γ < µ)<◦ Pκ
µ/D.

Also Pκ
µ/D = limdir(Pκ

γ/D : γ < µ) iff cf (µ) 6= κ.

Proof: Second statement: Let [f ] ∈ Pκ
µ/D.

cf (µ) 6= κ: there is γ < µ such that {α : f (α) ∈ Pγ} ∈ D.
Hence: [f ] ∈ Pκ

γ/D.
Therefore: Pκ

µ/D is direct limit.

cf (µ) = κ and (γα : α < κ) is cofinal in µ:
choose f ∈ Pκ

µ with f (α) ∈ Pµ \ Pγα .
Then [f ] ∈ Pκ

µ/D does not belong to the direct limit.
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Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume Pµ = limdir(Pγ : γ < µ).
Then limdir(Pκ

γ/D : γ < µ)<◦ Pκ
µ/D.

Also Pκ
µ/D = limdir(Pκ

γ/D : γ < µ) iff cf (µ) 6= κ.

Proof:
First statement: assume cf (µ) > ω.
Assume {[fn] : n ∈ ω} maximal antichain in limdir(Pκ

γ/D : γ < µ).
Then: {[fn] : n ∈ ω} maximal antichain in some Pκ

γ/D.
Therefore, also maximal in Pκ

µ/D. �

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.
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Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular µ > κ.
Let (Dγ : γ ≤ µ) be the fsi of Hechler forcing D.
(That is,

Dγ+1 = Dγ ⋆ Ḋ

Dδ = limdirγ<δDγ for limit δ.)
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Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular µ > κ.
Let (Dγ : γ ≤ µ) be the fsi of Hechler forcing D.

Obtain iteration (Dκ
γ/D : γ ≤ µ) such that:

Dκ
δ /D = limdirγ<δD

κ
γ/D iff cf (δ) 6= κ

(In particular, this is true for δ = µ.)
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Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular µ > κ.
Let (Dγ : γ ≤ µ) be the fsi of Hechler forcing D.

Obtain iteration (Dκ
γ/D : γ ≤ µ) such that:

Dκ
δ /D = limdirγ<δD

κ
γ/D iff cf (δ) 6= κ

Dκ
γ+1/D = Dκ

γ/D ⋆ Ḋ
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Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular µ > κ.
Let (Dγ : γ ≤ µ) be the fsi of Hechler forcing D.

Obtain iteration (Dκ
γ/D : γ ≤ µ) such that:

Dκ
δ /D = limdirγ<δD

κ
γ/D iff cf (δ) 6= κ

Dκ
γ+1/D = Dκ

γ/D ⋆ Ḋ

(Dκ
γ/D : γ < µ) is an fsi of Hechler forcing of length j(µ)

(I.e. Dκ
γ/D = Dj(γ).)
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Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular µ > κ.
Let (Dγ : γ ≤ µ) be the fsi of Hechler forcing D.

Obtain iteration (Dκ
γ/D : γ ≤ µ) such that:

Dκ
δ /D = limdirγ<δD

κ
γ/D iff cf (δ) 6= κ

Dκ
γ+1/D = Dκ

γ/D ⋆ Ḋ

(Dκ
γ/D : γ < µ) is an fsi of Hechler forcing of length j(µ)

The dominating family added by Dµ is still dominating in
V Dκ

µ/D
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Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular µ > κ.
Let (Dγ : γ ≤ µ) be the fsi of Hechler forcing D.

Obtain iteration (Dκ
γ/D : γ ≤ µ) such that:

Dκ
δ /D = limdirγ<δD

κ
γ/D iff cf (δ) 6= κ

Dκ
γ+1/D = Dκ

γ/D ⋆ Ḋ

(Dκ
γ/D : γ < µ) is an fsi of Hechler forcing of length j(µ)

The dominating family added by Dµ is still dominating in
V Dκ

µ/D

No a.d. family of V Dµ is mad in V Dκ
µ/D
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Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).
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Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).

Put P1
γ := (P0

γ)κ/D. Obtain iteration (P1
γ : γ ≤ µ).
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Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).

Put P1
γ := (P0

γ)κ/D. Obtain iteration (P1
γ : γ ≤ µ).

Put P2
γ := (P1

γ)κ/D. Obtain iteration (P2
γ : γ ≤ µ). Etc.

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).

Put P1
γ := (P0

γ)κ/D. Obtain iteration (P1
γ : γ ≤ µ).

Put P2
γ := (P1

γ)κ/D. Obtain iteration (P2
γ : γ ≤ µ). Etc.

More generally, for α < λ,
put Pα+1

γ := (Pα
γ )κ/D. Obtain iteration (Pα+1

γ : γ ≤ µ).
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Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).

Put P1
γ := (P0

γ)κ/D. Obtain iteration (P1
γ : γ ≤ µ).

Put P2
γ := (P1

γ)κ/D. Obtain iteration (P2
γ : γ ≤ µ). Etc.

More generally, for α < λ,
put Pα+1

γ := (Pα
γ )κ/D. Obtain iteration (Pα+1

γ : γ ≤ µ).

What do we do for limit α?
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Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).

Put P1
γ := (P0

γ)κ/D. Obtain iteration (P1
γ : γ ≤ µ).

Put P2
γ := (P1

γ)κ/D. Obtain iteration (P2
γ : γ ≤ µ). Etc.

More generally, for α < λ,
put Pα+1

γ := (Pα
γ )κ/D. Obtain iteration (Pα+1

γ : γ ≤ µ).

What do we do for limit α?
For some applications Pα

γ = limdirβ<αP
β
γ will be OK.
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Matrices of iterated ultrapowers

Assume λ > µ > κ regular.

Start with iteration (P0
γ : γ ≤ µ).

Put P1
γ := (P0

γ)κ/D. Obtain iteration (P1
γ : γ ≤ µ).

Put P2
γ := (P1

γ)κ/D. Obtain iteration (P2
γ : γ ≤ µ). Etc.

More generally, for α < λ,
put Pα+1

γ := (Pα
γ )κ/D. Obtain iteration (Pα+1

γ : γ ≤ µ).

What do we do for limit α?
For some applications Pα

γ = limdirβ<αP
β
γ will be OK.

For some applications want something else:
Suppose (Dβ

γ : γ ≤ µ) are such that D
β
γ+1 = D

β
γ ⋆ Ḋ for β < α.

Then still want Dα
γ+1 = Dα

γ ⋆ Ḋ. Doable but more complicated!
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Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

More cardinal invariants

A ⊆ [ω]ω a.d. family: |A ∩ B| < ω for A 6= B ∈ A
A mad family: A is a.d. and maximal
(I.e., for all C ∈ [ω]ω there is A ∈ A with |C ∩ A| = ω.)
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Ultrapowers and iterations
Applications

More cardinal invariants

A ⊆ [ω]ω a.d. family: |A ∩ B| < ω for A 6= B ∈ A
A mad family: A is a.d. and maximal

a := min{|A| : A is infinite mad}, the almost disjointness number.
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Ultrapowers and iterations
Applications

More cardinal invariants

A ⊆ [ω]ω a.d. family: |A ∩ B| < ω for A 6= B ∈ A
A mad family: A is a.d. and maximal

a := min{|A| : A is infinite mad}, the almost disjointness number.

U ultrafilter on ω.
F base of U : for all A ∈ U there is B ∈ F with B ⊆∗ A.
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More cardinal invariants

A ⊆ [ω]ω a.d. family: |A ∩ B| < ω for A 6= B ∈ A
A mad family: A is a.d. and maximal

a := min{|A| : A is infinite mad}, the almost disjointness number.

U ultrafilter on ω.
F base of U : for all A ∈ U there is B ∈ F with B ⊆∗ A.

χ(U) := min{|F| : F base of U}, the character of U .
u := min{χ(U) : U ultrafilter on ω}, the ultrafilter number.
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Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

More cardinal invariants

A ⊆ [ω]ω a.d. family: |A ∩ B| < ω for A 6= B ∈ A
A mad family: A is a.d. and maximal

a := min{|A| : A is infinite mad}, the almost disjointness number.

U ultrafilter on ω.
F base of U : for all A ∈ U there is B ∈ F with B ⊆∗ A.

χ(U) := min{|F| : F base of U}, the character of U .
u := min{χ(U) : U ultrafilter on ω}, the ultrafilter number.

Theorem

(i) b ≤ a

(ii) r ≤ u
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ZFC-inequalities: another diagram
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

First application: a versus d

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = µ holds.
In particular d < a is consistent.
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Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

First application: a versus d

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = µ holds.
In particular d < a is consistent.

Proof: Start with (D0
γ : γ ≤ µ): fsi of Hechler forcing.

Repeatedly take ultrapower to get Dα+1
γ = (Dα

γ )κ/D.

Guarantee in limit step α that still Dα
γ+1 = Dα

γ ⋆ Ḋ.

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
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First application: a versus d

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = µ holds.
In particular d < a is consistent.

Proof: Start with (D0
γ : γ ≤ µ): fsi of Hechler forcing.

Repeatedly take ultrapower to get Dα+1
γ = (Dα

γ )κ/D.

Guarantee in limit step α that still Dα
γ+1 = Dα

γ ⋆ Ḋ.

a ≥ λ: small a.d. families destroyed by ultrapower.
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First application: a versus d

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = µ holds.
In particular d < a is consistent.

Proof: Start with (D0
γ : γ ≤ µ): fsi of Hechler forcing.

Repeatedly take ultrapower to get Dα+1
γ = (Dα

γ )κ/D.

Guarantee in limit step α that still Dα
γ+1 = Dα

γ ⋆ Ḋ.

a ≥ λ: small a.d. families destroyed by ultrapower.

b = d = µ: (Dλ
γ : γ ≤ µ) still iteration of D (though not with

direct limits). �
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
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Applications

First application: a versus d

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = µ holds.
In particular d < a is consistent.

Remark: Using iterations along templates, Shelah also proved
CON(d < a) on the basis of CON(ZFC ) alone.
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Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.
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Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.

Proof: Build fsi (P0
γ : γ ≤ µ) and names (U̇0

γ : γ ≤ µ), (ℓ̇γ : γ < µ)
such that

(i) P0
γ 
 U̇0

γ is an ultrafilter

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.

Proof: Build fsi (P0
γ : γ ≤ µ) and names (U̇0

γ : γ ≤ µ), (ℓ̇γ : γ < µ)
such that

(i) P0
γ 
 U̇0

γ is an ultrafilter

(ii) P0
γ 
 “ℓ̇γ is the name for the L

U̇0
γ
-generic”
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Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.

Proof: Build fsi (P0
γ : γ ≤ µ) and names (U̇0

γ : γ ≤ µ), (ℓ̇γ : γ < µ)
such that

(i) P0
γ 
 U̇0

γ is an ultrafilter

(ii) P0
γ 
 “ℓ̇γ is the name for the L

U̇0
γ
-generic”

(iii) P0
γ 
 ran(ℓ̇δ) ∈ U̇0

γ for δ < γ
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Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.

Proof: Build fsi (P0
γ : γ ≤ µ) and names (U̇0

γ : γ ≤ µ), (ℓ̇γ : γ < µ)
such that

(i) P0
γ 
 U̇0

γ is an ultrafilter

(ii) P0
γ 
 “ℓ̇γ is the name for the L

U̇0
γ
-generic”

(iii) P0
γ 
 ran(ℓ̇δ) ∈ U̇0

γ for δ < γ

(iv) P0
γ+1 = P0

γ ⋆ L
U̇0

γ
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Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.

Proof: Build fsi (P0
γ : γ ≤ µ) and names (U̇0

γ : γ ≤ µ), (ℓ̇γ : γ < µ)
such that

(i) P0
γ 
 U̇0

γ is an ultrafilter

(ii) P0
γ 
 “ℓ̇γ is the name for the L

U̇0
γ
-generic”

(iii) P0
γ 
 ran(ℓ̇δ) ∈ U̇0

γ for δ < γ
(iv) P0

γ+1 = P0
γ ⋆ L

U̇0
γ

Note: (iii) implies

(v) P0
γ+1 
 U̇0

δ ⊆ U̇0
γ and ran(ℓ̇γ) ⊆∗

ran(ℓ̇δ) for δ < γ
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Second application: a versus u 1

Theorem (Shelah)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = c = λ and
b = d = u = µ holds.
In particular u < a is consistent.

Proof: Build fsi (P0
γ : γ ≤ µ) and names (U̇0

γ : γ ≤ µ), (ℓ̇γ : γ < µ)
such that

(i) P0
γ 
 U̇0

γ is an ultrafilter

(ii) P0
γ 
 “ℓ̇γ is the name for the L

U̇0
γ
-generic”

(iii) P0
γ 
 ran(ℓ̇δ) ∈ U̇0

γ for δ < γ

(iv) P0
γ+1 = P0

γ ⋆ L
U̇0

γ

Hence: P0
µ forces U̇0

µ is generated by ran(ℓ̇γ), γ < µ.
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Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

(iii) P1
γ 
 “ℓ̇γ is the name for the L

U̇1
γ
-generic”
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

(iii) P1
γ 
 “ℓ̇γ is the name for the L

U̇1
γ
-generic”

(iv) P1
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 ran(ℓ̇δ) ∈ U̇1

γ for δ < γ
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ
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 U̇1
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γ
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

(iii) P1
γ 
 “ℓ̇γ is the name for the L

U̇1
γ
-generic”

(iv) P1
γ 
 ran(ℓ̇δ) ∈ U̇1

γ for δ < γ

(v) P1
γ+1 = P1

γ ⋆ L
U̇1

γ

(vi) P1
γ 
 U̇1

δ ⊆ U̇1
γ for δ < γ
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

(iii) P1
γ 
 “ℓ̇γ is the name for the L

U̇1
γ
-generic”

(iv) P1
γ 
 ran(ℓ̇δ) ∈ U̇1

γ for δ < γ

(v) P1
γ+1 = P1

γ ⋆ L
U̇1

γ

(vi) P1
γ 
 U̇1

δ ⊆ U̇1
γ for δ < γ

Repeat this to get Pα+1
γ = (Pα

γ )κ/D.

Guarantee in limit step α that still Pα
γ+1 = Pα

γ ⋆ L̇
U̇α

γ
.
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

(iii) P1
γ 
 “ℓ̇γ is the name for the L

U̇1
γ
-generic”

(iv) P1
γ 
 ran(ℓ̇δ) ∈ U̇1

γ for δ < γ

(v) P1
γ+1 = P1

γ ⋆ L
U̇1

γ

(vi) P1
γ 
 U̇1

δ ⊆ U̇1
γ for δ < γ

Repeat this to get Pα+1
γ = (Pα

γ )κ/D.

Guarantee in limit step α that still Pα
γ+1 = Pα

γ ⋆ L̇
U̇α

γ
.

a ≥ λ: small a.d. families destroyed by ultrapower.
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Second application: a versus u 2

Take the ultrapower P1
γ := (P0

γ)κ/D.
Obtain iteration (P1

γ : γ ≤ µ) such that:

(i) P1
δ = limdirγ<δP

1
γ iff cf (δ) 6= κ

(ii) P1
γ 
 U̇1

γ is an ultrafilter extending U̇0
γ

(iii) P1
γ 
 “ℓ̇γ is the name for the L

U̇1
γ
-generic”

(iv) P1
γ 
 ran(ℓ̇δ) ∈ U̇1

γ for δ < γ

(v) P1
γ+1 = P1

γ ⋆ L
U̇1

γ

(vi) P1
γ 
 U̇1

δ ⊆ U̇1
γ for δ < γ

Repeat this to get Pα+1
γ = (Pα

γ )κ/D.

Guarantee in limit step α that still Pα
γ+1 = Pα

γ ⋆ L̇
U̇α

γ
.

u = µ: taking ultrapowers preserves ultrafilters generated by chains
of length µ. �
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Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and λ = λω > κ is regular.
Then there is a ccc forcing extension in which c = λ and
b = d = u = ℵ1 holds, and there is no ultrafilter of character κ.
In particular it is consistent that the character spectrum is
non-convex.
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Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and λ = λω > κ is regular.
Then there is a ccc forcing extension in which c = λ and
b = d = u = ℵ1 holds, and there is no ultrafilter of character κ.
In particular it is consistent that the character spectrum is
non-convex.

Proof sketch: As in previous proof with µ replaced by ℵ1 and P0
0

adds at least κ Cohen reals.
(This guarantees the ultrapowers are nontrivial.)
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Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and λ = λω > κ is regular.
Then there is a ccc forcing extension in which c = λ and
b = d = u = ℵ1 holds, and there is no ultrafilter of character κ.
In particular it is consistent that the character spectrum is
non-convex.

Proof sketch: As in previous proof with µ replaced by ℵ1 and P0
0

adds at least κ Cohen reals.

κ not character: taking ultrapowers kills ultrafilter bases of size κ.
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Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and λ = λω > κ is regular.
Then there is a ccc forcing extension in which c = λ and
b = d = u = ℵ1 holds, and there is no ultrafilter of character κ.
In particular it is consistent that the character spectrum is
non-convex.

Proof sketch: As in previous proof with µ replaced by ℵ1 and P0
0

adds at least κ Cohen reals.

κ not character: taking ultrapowers kills ultrafilter bases of size κ.

u = ℵ1 (and thus character): as before.
c = λ character: in ZFC . �
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Forth application: a and s versus b

Theorem (B.-Fischer)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = s = c = λ and
b = µ holds.
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Forth application: a and s versus b

Theorem (B.-Fischer)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = s = c = λ and
b = µ holds.

Proof sketch: P0
γ adds γ Cohen reals, γ ≤ µ.
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Forth application: a and s versus b

Theorem (B.-Fischer)

Assume κ is measurable, and λ = λω > µ > κ are regular.
Then there is a ccc forcing extension in which a = s = c = λ and
b = µ holds.

Proof sketch: P0
γ adds γ Cohen reals, γ ≤ µ.

Combine the methods of lectures 2 and 3 to make s and a large
while keeping b small.
Build fsi (Pα

γ : α ≤ λ) such that

(i) for even α, Pα+1
γ = Pα

γ ⋆ M
U̇α

γ

(ii) for odd α, Pα+1
γ = (Pα

γ )κ/D �
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Relatives of g and h

Today we look at g and h and their relatives.
Suslin ccc iterations and matrix iterations of lectures 1 through 3
keep these cardinals small.
So such iterations cannot be used to separate them.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Relatives of g and h

Today we look at g and h and their relatives.
Suslin ccc iterations and matrix iterations of lectures 1 through 3
keep these cardinals small.
So such iterations cannot be used to separate them.

To separate two such cardinals, we need to build a small witness
for one along the iteration while killing all small witnesses for the
other.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Relatives of g and h

Today we look at g and h and their relatives.
Suslin ccc iterations and matrix iterations of lectures 1 through 3
keep these cardinals small.
So such iterations cannot be used to separate them.

To separate two such cardinals, we need to build a small witness
for one along the iteration while killing all small witnesses for the
other.

For the latter task, use a diamond principle.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

g and gf 1

Recall:
A family D ⊆ [ω]ω is groupwise dense if

D is open
(∀A ∈ D ∀B ⊆∗ A (B ∈ D))

given a partition (In : n ∈ ω) of ω into intervals, there is
B ∈ [ω]ω such that

⋃

n∈B In ∈ D
(this implies, in particular, that D is dense)
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

g and gf 1

Recall:
A family D ⊆ [ω]ω is groupwise dense if

D is open
(∀A ∈ D ∀B ⊆∗ A (B ∈ D))

given a partition (In : n ∈ ω) of ω into intervals, there is
B ∈ [ω]ω such that

⋃

n∈B In ∈ D
(this implies, in particular, that D is dense)

D is a groupwise dense ideal if it is groupwise dense and closed
under finite unions.
Remark: D groupwise dense ideal ⇐⇒ dual filter D∗ non-meager.
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

g and gf 2

g := min{|D| : all D ∈ D groupwise dense and
⋂

D = ∅}
the groupwise density number.

gf := min{|D| : all D ∈ D groupwise dense ideals and
⋂

D = ∅}
the groupwise density number for ideals.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

g and gf 2

g := min{|D| : all D ∈ D groupwise dense and
⋂

D = ∅}
the groupwise density number.

gf := min{|D| : all D ∈ D groupwise dense ideals and
⋂

D = ∅}
the groupwise density number for ideals.

Clearly g ≤ gf . We show:

Theorem (B.)

CON(g < gf ).
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: ∀ filters F on ω, ∃f : ω → ω finite-to-one
such that either f (F) is the cofinite filter or f (F) is an ultrafilter.
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Lecture 2: Matrices
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Lecture 4: Witnesses

The problem
The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: ∀ filters F on ω, ∃f : ω → ω finite-to-one
such that either f (F) is the cofinite filter or f (F) is an ultrafilter.
semi-filter trichotomy: ∀ families X ⊆ [ω]ω closed under almost
supersets, ∃f : ω → ω finite-to-one such that either f (X ) is the
cofinite filter or f (X ) = [ω]ω or f (X ) is an ultrafilter.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: ∀ filters F on ω, ∃f : ω → ω finite-to-one
such that either f (F) is the cofinite filter or f (F) is an ultrafilter.
semi-filter trichotomy: ∀ families X ⊆ [ω]ω closed under almost
supersets, ∃f : ω → ω finite-to-one such that either f (X ) is the
cofinite filter or f (X ) = [ω]ω or f (X ) is an ultrafilter.

Theorem (Blass-Laflamme)

(i) filter dichotomy FD is equivalent to u < gf

(ii) semi-filter trichotomy is equivalent to u < g
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Lecture 1: Definability
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Lecture 4: Witnesses

The problem
The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: ∀ filters F on ω, ∃f : ω → ω finite-to-one
such that either f (F) is the cofinite filter or f (F) is an ultrafilter.
semi-filter trichotomy: ∀ families X ⊆ [ω]ω closed under almost
supersets, ∃f : ω → ω finite-to-one such that either f (X ) is the
cofinite filter or f (X ) = [ω]ω or f (X ) is an ultrafilter.

Theorem (Blass-Laflamme)

(i) filter dichotomy FD is equivalent to u < gf

(ii) semi-filter trichotomy is equivalent to u < g

Question (Blass)

Are filter dichotomy and semi-filter trichotomy equivalent?

In our model for g < gf : u = gf .
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Lecture 4: Witnesses

The problem
The construction

Outline of proof

Theorem (B.)

CON(g < gf ).

Outline of proof:
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Outline of proof

Theorem (B.)

CON(g < gf ).

Outline of proof:
Assume CH and build fsi of ccc partial orders of length ω2.
Along the iteration also build a witness D for g = ℵ1.
Use a diamond principle to kill (initial segments of) potential
witnesses E for gf = ℵ1 in limit stages of cofinality ω1.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Outline of proof

Theorem (B.)

CON(g < gf ).

Outline of proof:
Assume CH and build fsi of ccc partial orders of length ω2.
Along the iteration also build a witness D for g = ℵ1.
Use a diamond principle to kill (initial segments of) potential
witnesses E for gf = ℵ1 in limit stages of cofinality ω1.
The main point is that in such a limit stage a certain filter can be
built such that Laver forcing with this filter kills E while at the
same time not destroying (the initial part of) D

(see Crucial Lemma below).
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

1 Lecture 1: Definability
Suslin ccc forcing
Iteration of definable forcing
Applications

2 Lecture 2: Matrices
Extending ultrafilters
Matrix iterations
Applications

3 Lecture 3: Ultrapowers
Ultrapowers of p.o.’s
Ultrapowers and iterations
Applications

4 Lecture 4: Witnesses
The problem
The construction
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

The forcing

♦S2
1
: there is a sequence (Sα ⊆ α : α < ω2 and cf (α) = ω1)

such that ∀S ⊆ ω2 ∃ stationarily many α with S ∩ α = Sα.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

The forcing

♦S2
1
: there is a sequence (Sα ⊆ α : α < ω2 and cf (α) = ω1)

such that ∀S ⊆ ω2 ∃ stationarily many α with S ∩ α = Sα.

Build fsi (Pα, Q̇α : α < ω2) of ccc forcing such that

(i) if cf (α) = ω1, then Q̇α = L
Ḟα

(see below for details)
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

The forcing

♦S2
1
: there is a sequence (Sα ⊆ α : α < ω2 and cf (α) = ω1)

such that ∀S ⊆ ω2 ∃ stationarily many α with S ∩ α = Sα.

Build fsi (Pα, Q̇α : α < ω2) of ccc forcing such that

(i) if cf (α) = ω1, then Q̇α = L
Ḟα

(see below for details)

(ii) if cf (α) ≤ ω, then Q̇α = Ḋ
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 1

Construct groupwise dense families Dβ , β < ω1, along the iteration
to witness g = ℵ1.
Require Dβ′ ⊆ Dβ for β′ ≥ β.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 1

Construct groupwise dense families Dβ , β < ω1, along the iteration
to witness g = ℵ1.
Require Dβ′ ⊆ Dβ for β′ ≥ β.

More explicitly: have D≤α
β = Dβ ∩ Vα such that

D≤α
β′ ⊆ D≤α

β for β′ ≥ β
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 1

Construct groupwise dense families Dβ , β < ω1, along the iteration
to witness g = ℵ1.
Require Dβ′ ⊆ Dβ for β′ ≥ β.

More explicitly: have D≤α
β = Dβ ∩ Vα such that

D≤α
β′ ⊆ D≤α

β for β′ ≥ β

D≤α
β open

(but not necessarily groupwise dense)
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 1

Construct groupwise dense families Dβ , β < ω1, along the iteration
to witness g = ℵ1.
Require Dβ′ ⊆ Dβ for β′ ≥ β.

More explicitly: have D≤α
β = Dβ ∩ Vα such that

D≤α
β′ ⊆ D≤α

β for β′ ≥ β

D≤α
β open

additional conditions, guaranteeing Dβ will be groupwise dense
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Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 2

To show that
⋂

β<ω1
Dβ = ∅, need

∀A ∈ [ω]ω ∩ Vα ∃β < ω1 A /∈ Dβ (+α)
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 2

To show that
⋂

β<ω1
Dβ = ∅, need

∀A ∈ [ω]ω ∩ Vα ∃β < ω1 A /∈ Dβ (+α)

Argue that

∀A ∈ [ω]ω ∩ Vα ∃β < ω1 A /∈ D≤α
β (∗α)

and

∀A ∈ [ω]ω ∩ Vα ∀β < ω1 (A /∈ D≤α
β implies A /∈ D≤α+1

β ) (†α)
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building witnesses 2

To show that
⋂

β<ω1
Dβ = ∅, need

∀A ∈ [ω]ω ∩ Vα ∃β < ω1 A /∈ Dβ (+α)

Argue that

∀A ∈ [ω]ω ∩ Vα ∃β < ω1 A /∈ D≤α
β (∗α)

and

∀A ∈ [ω]ω ∩ Vα ∀β < ω1 (A /∈ D≤α
β implies A /∈ D≤α+1

β ) (†α)

Straightforward: (+α) follows from (∗α) and (†α).
Easy: (†α) holds.
Main point: proof of (∗α) by induction on α.
Standard: (∗α) for α limit and α = α′ + 1, cf (α′) ≤ ω.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 1

Main issue: proof of (∗α+1) in case cf (α) = ω1.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 1

Main issue: proof of (∗α+1) in case cf (α) = ω1.
Also construct filter Fα such that forcing with Qα = LFα over Vα

destroys potential witness for gf = ℵ1.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 1

Main issue: proof of (∗α+1) in case cf (α) = ω1.
Also construct filter Fα such that forcing with Qα = LFα over Vα

destroys potential witness for gf = ℵ1.
We want:

(i) if Eβ , β < ω1, is the initial segment of a potential witness for
gf = ℵ1, handed down by ♦S2

1
, then Fα diagonalizes the Eβ

(that is, for all β < ω1, Fα ∩ Eβ 6= ∅)
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Lecture 1: Definability
Lecture 2: Matrices
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Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 1

Main issue: proof of (∗α+1) in case cf (α) = ω1.
Also construct filter Fα such that forcing with Qα = LFα over Vα

destroys potential witness for gf = ℵ1.
We want:

(i) if Eβ , β < ω1, is the initial segment of a potential witness for
gf = ℵ1, handed down by ♦S2

1
, then Fα diagonalizes the Eβ

(that is, for all β < ω1, Fα ∩ Eβ 6= ∅)

(ii) for all partial functions f : ω → ω from Vα with
dom(f ) ∈ F+

α and f −1(n) /∈ F+
α for all n ∈ ω, there is

β < ω1 such that for all F ∈ Fα, f (F ∩ dom(f )) /∈ D≤α
β
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Lecture 1: Definability
Lecture 2: Matrices
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Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 1

Main issue: proof of (∗α+1) in case cf (α) = ω1.
Also construct filter Fα such that forcing with Qα = LFα over Vα

destroys potential witness for gf = ℵ1.
We want:

(i) if Eβ , β < ω1, is the initial segment of a potential witness for
gf = ℵ1, handed down by ♦S2

1
, then Fα diagonalizes the Eβ

(that is, for all β < ω1, Fα ∩ Eβ 6= ∅)
(ii) for all partial functions f : ω → ω from Vα with

dom(f ) ∈ F+
α and f −1(n) /∈ F+

α for all n ∈ ω, there is
β < ω1 such that for all F ∈ Fα, f (F ∩ dom(f )) /∈ D≤α

β

(i): for destroying a witness of gf = ℵ1.
(ii): for proving (∗α+1) (and thus building a witness for g = ℵ1).
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 1

Main issue: proof of (∗α+1) in case cf (α) = ω1.
Also construct filter Fα such that forcing with Qα = LFα over Vα

destroys potential witness for gf = ℵ1.
We want:

(i) if Eβ , β < ω1, is the initial segment of a potential witness for
gf = ℵ1, handed down by ♦S2

1
, then Fα diagonalizes the Eβ

(that is, for all β < ω1, Fα ∩ Eβ 6= ∅)
(ii) for all partial functions f : ω → ω from Vα with

dom(f ) ∈ F+
α and f −1(n) /∈ F+

α for all n ∈ ω, there is
β < ω1 such that for all F ∈ Fα, f (F ∩ dom(f )) /∈ D≤α

β

(i): for destroying a witness of gf = ℵ1.
(ii): for proving (∗α+1) (and thus building a witness for g = ℵ1).

Crucial Lemma

Assume (∗α). In Vα, there is Fα satisfying (i) and (ii) above.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 2

Crucial Corollary

Assume cf (α) = ω1 and (∗α) holds. Then (∗α+1) is true as well.
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 2

Crucial Corollary

Assume cf (α) = ω1 and (∗α) holds. Then (∗α+1) is true as well.

Proof:
Rank analysis of LFα-names:
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Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 2

Crucial Corollary

Assume cf (α) = ω1 and (∗α) holds. Then (∗α+1) is true as well.

Proof:
Rank analysis of LFα-names:
ϕ: statement of the forcing language.
σ forces ϕ: ∃p ∈ LF with stem(p) = σ and p 
 ϕ.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 2

Crucial Corollary

Assume cf (α) = ω1 and (∗α) holds. Then (∗α+1) is true as well.

Proof:
Rank analysis of LFα-names:
ϕ: statement of the forcing language.
σ forces ϕ: ∃p ∈ LF with stem(p) = σ and p 
 ϕ.

ρϕ(σ) = 0 if σ forces ϕ.
α > 0: ρϕ(σ) ≤ α if {n : ρϕ(σ⌢n) < α} ∈ F+.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 2

Crucial Corollary

Assume cf (α) = ω1 and (∗α) holds. Then (∗α+1) is true as well.

Proof:
Rank analysis of LFα-names:
ϕ: statement of the forcing language.
σ forces ϕ: ∃p ∈ LF with stem(p) = σ and p 
 ϕ.

ρϕ(σ) = 0 if σ forces ϕ.
α > 0: ρϕ(σ) ≤ α if {n : ρϕ(σ⌢n) < α} ∈ F+.

σ favors ϕ if ρϕ(σ) is defined (i.e., it is less than ω1).
σ forces at most one of ϕ and ¬ϕ and favors at least one of them.
In fact, σ favors ϕ iff σ does not force ¬ϕ.
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 3

Rank analysis of LFα-names, continued:

Let Ȧ be an LF -name for an infinite subset of ω.
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 3

Rank analysis of LFα-names, continued:

Let Ȧ be an LF -name for an infinite subset of ω.

rk(σ) = 0 if

either there is B ∈ [ω]ω such that, for all n ∈ B, σ favors
n ∈ Ȧ

or there is a partial function f : ω → ω such that
dom(f ) ∈ F+, f −1(n) /∈ F+ for all n ∈ ω, and σ⌢n favors
f (n) ∈ Ȧ for all n ∈ dom(f )

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 3

Rank analysis of LFα-names, continued:

Let Ȧ be an LF -name for an infinite subset of ω.

rk(σ) = 0 if

either there is B ∈ [ω]ω such that, for all n ∈ B, σ favors
n ∈ Ȧ

or there is a partial function f : ω → ω such that
dom(f ) ∈ F+, f −1(n) /∈ F+ for all n ∈ ω, and σ⌢n favors
f (n) ∈ Ȧ for all n ∈ dom(f )

α > 0: rk(σ) ≤ α if {n : rk(σ⌢n) < α} ∈ F+.
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Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 3

Rank analysis of LFα-names, continued:

Let Ȧ be an LF -name for an infinite subset of ω.

rk(σ) = 0 if

either there is B ∈ [ω]ω such that, for all n ∈ B, σ favors
n ∈ Ȧ

or there is a partial function f : ω → ω such that
dom(f ) ∈ F+, f −1(n) /∈ F+ for all n ∈ ω, and σ⌢n favors
f (n) ∈ Ȧ for all n ∈ dom(f )

α > 0: rk(σ) ≤ α if {n : rk(σ⌢n) < α} ∈ F+.

Claim: rk(σ) is defined for all σ. �

Jörg Brendle Aspects of iterated forcing



Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
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The problem
The construction

Building and destroying witnesses 4

For σ with rk(σ) = 0 fix either a witness Bσ or a witness fσ as in
the definition of rk.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 4

For σ with rk(σ) = 0 fix either a witness Bσ or a witness fσ as in
the definition of rk.
For σ of rank 0 such that Bσ is defined, use (∗α) to find γσ such
that Bσ /∈ D≤α

γσ
.
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Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 4

For σ with rk(σ) = 0 fix either a witness Bσ or a witness fσ as in
the definition of rk.
For σ of rank 0 such that Bσ is defined, use (∗α) to find γσ such
that Bσ /∈ D≤α

γσ
.

For σ of rank 0 such that fσ is defined, use property (ii), which
holds for Fα by Crucial Lemma, to find γσ such that for all
F ∈ Fα, fσ(F ∩ dom(fσ)) /∈ D≤α

γσ
.
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The problem
The construction

Building and destroying witnesses 4

For σ with rk(σ) = 0 fix either a witness Bσ or a witness fσ as in
the definition of rk.
For σ of rank 0 such that Bσ is defined, use (∗α) to find γσ such
that Bσ /∈ D≤α

γσ
.

For σ of rank 0 such that fσ is defined, use property (ii), which
holds for Fα by Crucial Lemma, to find γσ such that for all
F ∈ Fα, fσ(F ∩ dom(fσ)) /∈ D≤α

γσ
.

Let β ≥ supσ γσ.
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The problem
The construction

Building and destroying witnesses 5

Claim: 
 Ȧ /∈ D≤α+1
β .
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 5

Claim: 
 Ȧ /∈ D≤α+1
β .

Assume: ∃B ∈ D≤α
β and p ∈ LFα such that p 
 Ȧ ⊆ B.

Wlog: σ := stem(p) has rank 0.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 5

Claim: 
 Ȧ /∈ D≤α+1
β .

Assume: ∃B ∈ D≤α
β and p ∈ LFα such that p 
 Ȧ ⊆ B.

Wlog: σ := stem(p) has rank 0.

Assume first Bσ is defined. By assumption: Bσ \ B is infinite.
Choose k ∈ Bσ \ B. Since σ favors k ∈ Ȧ: ∃q ≤ p such that
q 
 k ∈ Ȧ, a contradiction.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 5

Claim: 
 Ȧ /∈ D≤α+1
β .

Assume: ∃B ∈ D≤α
β and p ∈ LFα such that p 
 Ȧ ⊆ B.

Wlog: σ := stem(p) has rank 0.

Assume first Bσ is defined. By assumption: Bσ \ B is infinite.
Choose k ∈ Bσ \ B. Since σ favors k ∈ Ȧ: ∃q ≤ p such that
q 
 k ∈ Ȧ, a contradiction.

Assume next fσ is defined. Let F := succp(σ). By (ii):

fσ(F ∩ dom(fσ)) /∈ D≤α
β . Hence: choose n ∈ F ∩ dom(fσ) such

that k := fσ(n) /∈ B. Since σ⌢n favors k ∈ Ȧ: ∃q ≤ p with
stem(q) ⊇ σ⌢n such that q 
 k ∈ Ȧ, again a contradiction.
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

Building and destroying witnesses 5

Claim: 
 Ȧ /∈ D≤α+1
β .

Assume: ∃B ∈ D≤α
β and p ∈ LFα such that p 
 Ȧ ⊆ B.

Wlog: σ := stem(p) has rank 0.

Assume first Bσ is defined. By assumption: Bσ \ B is infinite.
Choose k ∈ Bσ \ B. Since σ favors k ∈ Ȧ: ∃q ≤ p such that
q 
 k ∈ Ȧ, a contradiction.

Assume next fσ is defined. Let F := succp(σ). By (ii):

fσ(F ∩ dom(fσ)) /∈ D≤α
β . Hence: choose n ∈ F ∩ dom(fσ) such

that k := fσ(n) /∈ B. Since σ⌢n favors k ∈ Ȧ: ∃q ≤ p with
stem(q) ⊇ σ⌢n such that q 
 k ∈ Ȧ, again a contradiction.

Proves Crucial Corollary. �
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The construction

End of proof

Corollary

g = ℵ1 holds in Vω2
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

End of proof

Corollary

g = ℵ1 holds in Vω2

Proof: Know: (∗α) holds for all α. Implies: g = ℵ1. �
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Lecture 1: Definability
Lecture 2: Matrices

Lecture 3: Ultrapowers
Lecture 4: Witnesses

The problem
The construction

End of proof

Corollary

g = ℵ1 holds in Vω2

Corollary

gf = ℵ2 holds in Vω2

Proof: E = {Eβ : β < ω1} family of groupwise dense ideals.
By ♦S2

1
and (i) of Crucial Lemma:

∃α such that (Eβ ∩ Vα) ∩ Fα 6= ∅ for all β < ω1.
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The problem
The construction

End of proof

Corollary

g = ℵ1 holds in Vω2

Corollary

gf = ℵ2 holds in Vω2

Proof: E = {Eβ : β < ω1} family of groupwise dense ideals.
By ♦S2

1
and (i) of Crucial Lemma:

∃α such that (Eβ ∩ Vα) ∩ Fα 6= ∅ for all β < ω1.

LFα adds pseudointersection through filter Fα, i.e., a set X ∈ [ω]ω

such that for all β < ω1 there is Bβ ∈ Eβ ∩ Vα with X ⊆∗ Bβ .
Eβ open: X ∈

⋂

β Eβ . Thus E cannot witness gf = ℵ1. �
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